$FeAlO_3$ phase at ultrahigh-temperature metamorphic conditions: Evidences from the sillimanite— Fe_2O_3 and sillimanite— Fe_3O_4 systems at 9 kbar and 1050 °C

*Toshisuke Kawasaki¹, Tatsuro Adachi², Hiroaki Ohfuji¹, Yasuhito Osanai²

1. Ehime University, 2. Kyushu University

Two high pressure experiments at 9 kbar and 1050 °C under moisture condition reveal FeAlO₃ phase is stable under ultrahigh-temperature metamorphic conditions. FeAlO₃ and corundum newly crystallised accompanying SiO₂-rich melt and vapour among sillimanite crystals from the mixture of Rundvågshetta sillimanite and reagent-grade Fe₂O₃ (weight ratio of 95:5) within Pt capsule. We found no hematite in the charge. In contrast, we found FeAlO₃ phase, SiO₂-rich melt and vapour among sillimanite from the mixture of Rundvågshetta sillimanite and reagent-grade Fe₃O₄ at (weight ratio of 86:14) within AuPd capsule. We found a domain composed by FeAlO₃, corundum, magnetite—hercynite spinel and ulvöspinel at the bottom part of the charge. The domain was contact with melt among sillimanite. The present results suggest the possibility that FeAlO₃ phase would be an index mineral of ultrahigh-temperature metamorphism for the partially melted Fe—Al-rich granulites under hydrous and oxidised environments.

Keywords: FeAIO3 phase, sillimanite, corundum, spinel, ultrahigh-temperature granulies

Fig. 1. Backscattered electron image (BSEI) of run products recrystallised from the mixture of Rundvågshetta sillimanite and Fe₂O₃ in the Pt capsule (left: run no. 171018A) and the mixture of Rundvågshetta sillimanite and Fe₃O₄ in the AuPd capsule (right: run no. 171018D) at 9 kbar 1050 °C under moisture condition. Left: euhedral corundum with fine vapour hole, FeAIO₃ phase, glass and vapour (dark holes) fill among sillimanite crystals. Number 3 is the analysed point by Raman spectroscopy. Right: euhedral 5–10 μ m size FeAIO₃ phase and fine (<1 μ m) FeAIO₃ phase are scattered among sillimanite crystals accompanying melt and vapour (dark hole). Crn, corundum. FeAIO₃, FeAIO₃ phase. Gls, glass. Sil, sillimanite. V, vapour.