High-pressure phase transitions of minerals in the system MgO-TiO₂

*Masaki Akaogi¹, Tetsuya Fujimura¹, Shunto Arai¹, Masaki Okano¹, Hiroshi Kojitani¹

1. Department of Chemistry, Faculty of Science, Gakushuin University

 Mg_2TiO_4 , $MgTiO_3$ and $MgTi_2O_5$ form spinel(Sp)-, ilmenite(IIm)-, and pseudobrookite(Pbr)-type solid solutions, respectively, with other endmembers such as Fe_2TiO_4 , $FeTiO_3$ and $FeTi_2O_5$. These phases occur as minor minerals in various igneous and metamorphic rocks. Previous studies on stability relations of Mg_2TiO_4 , $MgTiO_3$ and $MgTi_2O_5$ at high pressure were limited below about 3 GPa, except for that the transitions in $MgTiO_3$ were examined up to about 18 GPa. In this study, we have examined the phase transitions of these magnesium titanates up to 28 GPa and 1800 °C.

We have determined the high-pressure phase relations in Mg₂TiO₄, MgTiO₃ and MgTi₂O₅ at 4-28 GPa and 1000-1800 °C using multianvil apparatus with the quench method. MgTiO₃ ilm transformed to the LiNbO₃ (Ln)-type high-pressure phase at 16-20 GPa and 1200-1600 °C. The Ln phase was interpreted as the retrograde transformation product from perovskite(Pv)-type MgTiO₃ stable at high pressure and high temperature (Linton et al., 1999). Above 21-25 GPa, the recovered phases were MgO and a-PbO₂-type TiO₂, the latter of which was interpreted to be converted from baddeleyite(Bd)-type TiO₂. The transition boundary from Pv to MgO + TiO₂(Bd) has a positive Clapeyron slope. Mg₂TiO₄ Sp dissociates to MgO + MgTiO₃ Ilm at about 1 GPa, and at higher pressure they changes to MgO + MgTiO₃ Pv and subsequently to 2MgO + TiO₂(Bd). MgTiO₂. At higher pressure, the assemblage changes to MgTiO₃ Pv + a-PbO $_2$ -type TiO₂, and subsequently to MgO + 2TiO₂(Bd). These results show that the mixtures of MgO and TiO₂ (Bd) are stable above 20-25 GPa in the three magnesium titanates. We also performed Rietveld structure refinement of Ln-type MgTiO₃ using synchrotron powder X-ray diffraction data, and confirmed that Ti⁴⁺ and Mg²⁺ ions are slightly deviated from the centrosymmetric positions in the octahedra which gives polarity of the MgTiO₃ Ln-phase.

The high-pressure transition behaviors of Mg₂TiO₄, MgTiO₃ and MgTi₂O₅ are similar to those of Fe₂TiO₄, FeTiO₃ and FeTi₂O₅, respectively, up to moderate pressures, where the phases transform to the assemblages involving MTiO₃ IIm and Pv (M = Mg, Fe). However, the transition behaviors are different at higher pressures: Fe₂TiO₄ transforms to CaTi₂O₄(CT)-type phase, and FeTiO₃ dissociates to Fe₂TiO₄ CT + a dense orthorhombic FeTi₂O₅ phase (Akaogi et al., 2017).

Keywords: high pressure, titanate mineral, phase transition