鬼界カルデラ・アカホヤ噴火の水中火砕流の分布
Distribution of submarine pyroclastic-flow deposits of Akahoya eruption, Kikai caldera

*清水 賢1,2、島 伸和3,1、中岡 礼奈1、松野 哲男1,3、清杉 孝司5、井和丸 光1,2、佐野 守1,2、西村 公宏3、鈴木 桂子1,3、金子 克哉3、山口 寛登4、堀内 美咲3、廣瀬 時3、林 和輝3、巽 好幸1,3
*Satoshi Shimizu1,2, Nobukazu Seama3,1, Reina NAKAOKA1, Tetsuo Matsuno1,3, Koji Kiyosugi5, Hikaru Iwamaru1,2, Mamoru Sano1,2, Kimihiro Nishimura3, Keiko Suzuki-Kamata1,3, Katsuya Kaneko3, Hikaru Yamaguchi4, Misaki Horiuchi3, Toki Hirose3, Kazuki Hayashi3, Yoshiyuki Tatsumi1,3

1. 神戸大学 海洋底探査センター、2. 日本海洋事業株式会社、3. 神戸大学 大学院 理学研究科惑星学専攻、4. 神戸大学 理学部惑星学科、5. 神戸大学 自然科学系先端融合研究環
1. Ocean Bottom Exploration Center, Kobe University, 2. Nippon Marine Enterprises, Ltd., 3. Department of Planetology, Graduate School of Science, Kobe University, 4. Department of Planetology, Faculty of Science, Kobe University, 5. Organization of Advanced Science and Technology, Kobe University

Kikai caldera, most of which is submerged in the seawater of the south of the Kyusyu Island, southwest Japan, is the Quaternary active caldera volcano. Latest eruption accompanied by caldera collapse taken place in 7.3 ka is the biggest Holocene eruption in Japan Archipelago. The ash-fall known as Akahoya was spread to entire southwest Japan and the pyroclastic flow thought as a low-aspect ratio ignimbrite is distributed in subaerial parts of the surrounding islands 40-80 km away from the source. Such submarine caldera must supplied the products not only in air, but largely in the water which has not been identified yet.

In order to understand the distribution of the pyroclastic-flow deposits beneath the sea around Kikai caldera, we conducted high resolution marine seismic studies from 2016 to 2018 by T/V Fukae-maru. We identified the uppermost unit widely recognized around Kikai caldera as the pyroclastic-flow deposit associated with 7.3-ka Akahoya eruption from the seismic sequence stratigraphic analysis and glass composition of sediments. The uppermost unit, characterized by subparallel to hummocky configurations of high amplitude reflections, covers the slope fan and progradational deposits of shelf edge developed between the Kyusyu Island and Kikai caldera. These secondary deposits under the uppermost unit are interpreted to deposit around the last glacial by reason of the erosion structure seen on the top-lap surface of regressive clinoform at 120 m below current sea level. Since uppermost unit is deposited after the last glacial (18 ka) and shows consistent seismic facies around Kikai caldera, the unit is inferred as products of 7.3-ka eruption. This is supported by analysis of glass composition of the sediments sampled at the seafloors interpreted as the above seismic unit, which shows the bimodal geochemical characteristic of high SiO$_2$ glass shards and lesser amount of low SiO$_2$ glass shards by which Koya pyroclastic-flow deposits are characterized (Nakaoka et al., this meeting).

This uppermost seismic unit interpreted as pyroclastic-flow deposit represents Akahoya eruption is distributed with a thickness of ~50 m around Kikai caldera. It maintains a certain amount of thickness until it reaches the shelf edge of the Kyusyu and surrounding islands. At least 40 km radius circle around the caldera, this unit is recognizable in most of the area of the seismic profiles. This result shows that a large amount of volcanic materials are ejected not only in air rather in the water at 7.3-ka Akahoya eruption.
キーワード: カルデラ、火砕流堆積物、地震探査、層序学
Keywords: Caldera, Pyroclastic flow deposits, Sesimic survey, Sequence stratigraphy