Observed dependence of surface ozone on increasing temperature in Shanghai, China

*Yixuan Gu¹, Ke Li², Jianming Xu¹, Hong Liao³

1. Yangtze River Delta Center for Environmental Meteorology Prediction and Warning, 2. John A. Paulson School of Engineering and Applied Sciences, Harvard University, 3. School of Environmental Science and Engineering, Nanjing University of Information Science and Technology

Eight-year measurements at urban (Xujiahui, XJH) and remote (Dongtan, DT) stations during 2010-2017 are employed to examine the surface ozone (O_3) -temperature relationship in Shanghai, China. O_3 pollution was getting worse in Shanghai, with daily maximum O₃ concentrations increasing at a rate of 2.45 ppb yr⁻¹ in urban site. The climate penalty (m_{O3-T}), defined as the slope of O₃ change with increasing temperature, exhibited largest values in summer. Summertime O₃ increased faster as temperature increased, with mean rates of 6.7 and 13.7 ppb °C⁻¹, respectively in XJH and DT above 30°C. Sensitivity experiments indicate that the temperature dependence of biogenic volatile organic compounds (VOCs) emissions should be the main chemical driver of the high-temperature O₃ response in summer, since simulated values of m_{0.3-T} are most sensitive to the temperature-related changes in biogenic isoprene emissions. NO_x emission reductions strengthened the high-temperature O₃ response in Shanghai, with summer mean m_{03.T} values increasing from 1.52 ppb°C⁻¹ during 2010-2012 to 2.97 ppb °C⁻¹ during 2013-2017. As NO_x emissions continue to decrease, the dependence of m_{O3-T} on the biogenic VOC emissions could be weakened. Model results suggest that reductions in anthropogenic VOC emission reductions would effectively reduce the sensitively of O₃ to increasing temperatures in urban Shanghai. Effective emission reduction strategies should be formulated to balance VOC/NO_x ratios, so as to wrestle with the challenges for future O_3 pollution.

Keywords: Ozone, isoprene, temperature, atmospheric chemistry, Shanghai