Long-term warming effect on soil carbon fluxes in a red pine forest in Tsukuba

*Munemasa Teramoto¹, Naishen Liang¹, Jiye Zeng¹, Jun Koarashi², Toshiaki Kondo³, Mariko Atarashi-Andoh², Takafumi Aramaki¹, Xin Zhao ¹

1. National Institute for Environmental Studies, 2. Japan Atomic Energy Agency, 3. Japan International Research Center for Agricultural Sciences

Globally, soil contains about 3000 Gt of organic carbon. Annually, about 98 GtC is released to the atmosphere from soil as CO_2 (soil respiration, R_s). R_s consists of root respiration and heterotrophic respiration (R_h), and R_h contributes to more than the half of soil respiration. On the other hand, upland soil uptakes CH_4 . Therefore, soil (especially forest soil) is a large source for CO_2 and sink for CH_4 . Long-term response of those soil carbon fluxes to warmer environment is a key for mitigation and adaptation for future climate change. However, long-term continuous monitoring data for those soil carbon fluxes are totally limited.

To examine the long-term response of R_h to global warming in Asian monsoon forests, we set multi-channel automated chamber measurement system in a red pine forest in Tsukuba in February 2006. We prepared 12 trenched chambers (90 cm ×90 cm ×50 cm) to continuously measure R_h . Half of those trenched chambers were artificially warmed by infrared heaters 1.6 m above the soil surface (+2.5°C), and influence of soil warming on R_h was examined by comparing control plots and warming plots. In July 2009, we added 8 chambers to measure R_s . Further, we started continuous measurement of soil CH₄ flux in June 2019 using the same chamber measurement system by connecting control unit with CH₄ analyzer (915-0011, Los Gatos Research, Inc., USA).

Remarkable exponential relationships between soil temperature and soil CO_2 effluxes (R_s and R_h) were confirmed every year. In addition, soil CO_2 effluxes were observed to be related with soil moisture especially in summer period from July to September. On the other hand, we found that soil CH₄ was negatively related with soil moisture. Those observations suggest that soil temperature is the primary factor controlling soil CO_2 effluxes, whereas soil moisture is the main factor controlling soil CH₄ uptake in our study site.

Keywords: Soil respiration, CH4, Chamber, Global warming