Nitrate isotopes in the Bay of Bengal

*Chisato Yoshikawa¹, Akiko Makabe¹, Yohei Matsui¹, Sakae Toyoda², Makio Honda¹, Naohiko Ohkouchi¹

1. Japan Agency for Marine-Earth Science and Technology, 2. Tokyo Institute of Technology

Nitrogen isotopic composition of nitrate (δ ¹⁵N_{Nitrate}) is widely used as a tracer of ocean-internal nitrogen cycling (consumption and regeneration) and ocean-external nitrogen inputs and losses (N2-fixation and denitrification). A $\delta^{15}N_{\text{Nitrate}}$ value increases, in conjunction with nitrate depletion, due to an isotopic effect during nitrate assimilation by phytoplankton. When denitrification occurs in the water column, a δ ¹⁵N_{Nitrate} value extremely increases due to a strong isotopic effect. N₂-fixation produces fixed nitrogen with a δ^{15} N value of ~0‰, as nitrogen fixers take up N₂ gas with little isotopic effect. Here we determined δ^{15} N_{Nitrate} and $\delta^{18}O_{\text{Nitrate}}$ along 88°E in the Bay of Bengal during the cruise KH-18-6-leg2 of R/V Hakuho-Maru . The nitrate concentrations were below 1 μ M in the surface water of the whole area. Especially, the nitrate depleted water spreads out below the depth of 400 m at the station near 20°S. The $\delta^{15}N_{Nitrate}$ values were expected to increase toward the surface in conjunction with nitrate depletion unless ¹⁵N depletion by N₂-fixation and ¹⁵N enrichment by denitrification are dominant. The δ ¹⁵N_{Nitrate} showed 5‰ in the bottom and deep waters and increased to 7‰ in the intermediate water. The horizontal maximum of the $\delta^{15}N_{Nitrate}$ in the intermediate water was found at the northern edge site where the oxygen concentration dropped below 1 μ M. The ¹⁵N enrichment in the intermediate water suggests the nitrate in the Indian Central Water is affected by benthic or water-column denitrification. The $\delta^{15}N_{Nitrate}$ once decreased to 6‰ in the subsurface water and then increased to the surface. The horizontal minimum of the $\delta^{15}N_{\text{Nitrate}}$ in the subsurface water was found in the nitrate depleted water near 20°S. The ¹⁵N depletion in the subsurface water suggests one of the sources of surface nitrogen is the remineralized nitrogen originated from N₂-fixation. In the presentation, we will discuss the nitrogen cycle of the Bay of Bengal in more detail by using the $\delta^{18}O_{\text{Nitrate}}$ values.

Keywords: Marine Nitrogen Cycle, Nitrogen Isotopes, Indian Ocean