Detection method of anomaly using relative index of spatial variations of DIC for CO₂ leakage monitoring on CO₂ sub-seabed storage

*Yuji Watanabe^{1,2}, Keisuke Uchimoto^{1,2}, Saeko Mito^{1,2}, Zigiu Xue^{1,2}

1. Research Institute of Innovative Technology for the Earth, 2. Geological Carbon Dioxide Storage Technology Research Association

When CO_2 is stored in sub-seabed geological formations in Japan, marine monitoring is mandatory to detect CO_2 leakage as soon as possible should it occur. In the Tomakomai CCS Demonstration Project, a threshold line based on a negative correlation between partial pressure of CO_2 (p CO_2) and dissolved Oxygen saturation in seawater is used to detect an anomalously high value of p CO_2 , which is suspected to be a sign of CO_2 leakage. However, these indexes had large fluctuation and caused several pseudo-anomalous errors in the project. Dissolved CO_2 in seawater dissociate into CO_2 in the proportion of CO_2 which is correspond to p CO_2 is less than 1% among total dissolved CO_2 (DIC) in seawater. If CO_2 leak into seawater, p CO_2 reflects the leaked CO_2 but is affected by various factors; e.g. water temperature, p CO_2 had total alkalinity. However, the amount of leaked CO_2 is summed in DIC itself. Accordingly, we try to assess the CO_2 leakage using DIC. In this study, we propose the new index using the spatial variations of DIC. This index has suitable for the monitoring not in the injection phase but also in the post-injection period, because the index eliminates the interannual variation including the decadal increases of atmospheric CO_2 , and also the intra-annual fluctuation resulted from the seasonal change.

Keywords: Sub-seabed CO2 storage, Coastal monitoring, CO2 leakage, Dissolved inorganic carbonate