The paleo ocean temperature recorded in carbonate clumped isotope of early Pleistocene fish otolith fossils from the Dainichi Formation of the Kakegawa Group, Shizuoka

*Hirokazu Kato¹, Shota Amekawa¹, Akihiro Kano¹

1. Department of Earth and Planetary Science, The University of Tokyo

The Dainichi Formation of Kakegawa Group distributed in southwestern Shizuoka Prefecture is shallow sea sediment of early Pleistocene (~2 Ma) and contains various marine fish otoliths. Otolith is calcium carbonate structure in the inner ear of vertebrates and used as balance indicator. Otolith of teleost fish especially grows large and many of them weigh over ~10 milligrams. They often keep firm structure in stratums. We analyzed the bulk and clumped isotopes of fossil and modern otoliths of several species including *Sillago* sp. *Nibea* sp. *Apogonichthys* sp. in order to examine their potential for the ancient temperature archive.

The carbonate clumped isotopes thermometry is a technique to reconstruct the temperature of mineral precipitation without the isotopic information of the parent water. The abundance anomaly of ⁴⁷CO₂ (Δ_{47}) generated by acid digestion of calcite is an index of temperature (Ghosh *et al.* 2006). There are few studies about otolith Δ_{47} value although its rigid microstructure is tolerant against diagenetic alternation. The temperature calibration of fish otolith Δ_{47} value by Ghosh et al. (2007) is marginally different from the original calibration of Ghosh et al. (2006). The small discrepancy might reflect a vital effect, or systematic error in temperature estimation of fish growth (Eiler, 2011). We used temperature calibration depending on synthetic calcites developed by Kato et al. (2019).

The Δ_{47} values were 0.709–0.723‰ (13.0–17.4°C) for fossil *Sillago*, 0.717–0.719‰ (14.0–14.7°C) for fossil *Nibea* and 0.724‰ (12.4°C) for fossil *Apogonichthys* with typical measurement error of ±0.01‰. While the modern otoliths yield Δ_{47} temperatures well reproducing the modern ocean temperature. The result of paleo temperature reconstruction is ~5°C colder than Δ_{47} temperatures from modern otoliths. The paleo water δ^{18} O value reconstructed from fossil otolith δ^{18} O corrected by Δ_{47} temperature was – 1–2‰VSMOW. This value is significantly lower than present ocean δ^{18} O and may indicate strong influence of fresh water in the depositional setting of the lower Pleistocene Dainichi Formation.

References;

Eiler (2011) Quat. Sci. Rev. 30, 3575-3588.

Ghosh et al. (2006) Geochim. Cosmochim. Acta 70, 1439-1456.

Ghosh et al. (2007) Geochim. Cosmochim. Acta 71, 2736-2744.

Kato et al. (2019) Geochim. Cosmochim. Acta 244, 548–564.

Keywords: Pleistocene, Fish otolith, Paleo ocean temperature, Carbonate clumped isotope