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Fluid flow slower than the sound velocity is pervasive in the Earth’s interior. Typical examples are mantle

convection, outer core convection, crustal deformation, and hydrothermal circulation. Obtaining the flow

field of such systems requires numerical calculations because they usually contain complex physics

including chemical reactions. Among the above-described systems, this presentation focuses on mantle

convection as a representative of a slow flow system and considers an effective method for solving the

flow field. 

 

The flow of mantle is hard to solve because of the following three characteristics (e.g., Takeyama et al.,

2017): Flow is very slow compared with the sound velocity; fluid is highly viscous; the viscosity varies at

many orders of magnitudes. In usual, the sound velocity is approximated to be infinite (or the time

derivative term of the continuity equation is ignored) to remove the time step restriction caused by the

fast propagation of sound. In addition to the incompressible approximation described above, the time

derivative term of the momentum equation is also ignored to remove the time step restriction caused by

fast viscous diffusion compared with thermal diffusion. This second approximation is unique for mantle

convection. In spite that these two approximations remove the time step restriction, the continuity and

momentum equations without the time derivatives must be solved iteratively at each time step of the

energy equation, the only time-dependent equation. 

 

One of the most well-known methods for obtaining the flow field of the mantle is a class of the SIMPLE

method (Patankar, 1980), which solves for the flow field by calculating pressure and velocity fields

alternately by sequential iterations. The method of Kameyama et al. (2005) solves for the flow field as a

steady-state of the continuity and momentum equations using the pseudo-compressibility method

combined with the multi-grid method. Obtaining the flow field with a variable viscosity requires care in

iterative methods. Recently, Takeyama et al. (2017) adopted a completely different approach for

approximating the time derivative terms of the continuity and momentum equations. The direction of

approximation is opposite to that used in the existing methods: The sound velocity is slowed down near to

the flow velocity of the mantle, and; the viscous diffusion is also decreased near to the thermal diffusion.

With the help of these approximations, the equations can be integrated explicitly with a practically large

time step. 

 

This presentation reconsiders Takeyama et al.’s (2017) explicit method with a series of two-dimensional

finite difference calculations. The equations to be solved are based on those with the Boussinesq

approximation, although Takeyama et al. (2017) solved the equations for a compressible system that are

not similar to those for mantle convection. The system of equations in the non-dimensionalized form has

the following three parameters: the Prandtl number (Pr), the non-dimensionalized sound speed (1/M), as

well as the Rayleigh number (Ra). The present explicit method is able to reproduce the steady-state

benchmark problems in Blankenbach et al. (1989) at a certain parameter range of Pr and M. However, to

match the time-dependent behaviors (e.g., oscillative solutions), Pr should be many orders greater than 1

but M is not sensitive to the result. The time step becomes small when Pr is large because it is

proportional to the inverse of Pr. What is worse, the time step is also proportional to the square of mesh
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spacing in such cases. As a result, when time-dependent problems are considered with small mesh

spacing, the present method becomes slow (but it may be still faster than the SIMPLE-like methods). 

 

To overcome the small time step restriction of the explicit method with large Pr, a little more strategy is

required. A class of the explicit Runge-Kutta method (e.g., Hairer et al., 1991) is known to increase the

time step of diffusion equations, which may be suitable for the present situation. This method has been

successfully applied to problems in magneto-hydrodynamics with highly anisotropic thermal diffusion

(e.g., Vaidya et al., 2017). Here, this method is added to the explicit solver for the continuity and

momentum equations of mantle convection. A series of calculations shows that this method works

effectively to speed up the calculation even if Pr is very large. It is examined how fast this method can

accelerate the explicit solver.
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