Characteristic multi-sphere interaction in the coastal and marine environment inferred from infrasound observation at Terra Nova Bay, Antarctica

*Takahiko Murayama¹, Masaki Kanao²

1. Japan Weather Association, 2. National Institute of Polar Research

Characteristic features of infrasound waves observed in the Antarctic reveal physical interaction involving surface environments around the continent and Southern Ocean. An infrasound array (100 m spacing) by using three sensors (Chaparral Physics Model 25, with a detectable frequency range of 0.1-200 Hz), together with a broadband barometer (Digiquartz Nano-Resolution Model 6000-16B Barometer, with a detectable frequency range of 0-22 Hz) were installed at Jang Bogo Staion, Tera Nova Bay, West Antarctica in December 2015 by the Korea Arctic and Antarctic Research Program (KAARP). The initial data recorded by the broadband barometer include several signals originated surrounding surface environment, in addition to the local wind noises such as katabatic signals. Clear signals from background oceanic origin (the "microbaroms") are continuously recorded at the austral summer on mid-December with predominant frequency around 5 s. Variations of their frequency context and strength appeared in Power Spectral Density are affected by evolution of the sea-ice surrounding the Tera Nova Bay.