Effect of GCR on the atmospheric chemistry process of Titan: a new constraint by the determination of 14N/15N in CH₃CN with ALMA

*Takahiro IINO¹, Hideo Sagawa², Takashi Tsukagoshi³

1. Information Technology Center, the University of Tokyo, 2. Kyoto Sangyo University, 3. National Astronomical Observatory of Japan

By analyzing archival data obtained by the Atacama Large Millimeter/submillimeter Array (ALMA), we have successfully detected rotational transitions of $CH_3C^{15}N$ (J = 19--18) at the 338 GHz band in Titan's atmospheric spectra.

Using the radiative transfer analysis, comparing those observations with the simultaneously observed CH_3 CN (J = 19--18) lines at the 349 GHz band, which probe from 160 to ~400 km altitude, we then derived 14 $N/^{15}N$ in CH_3CN as 125 (+145/-44). The best-fit value suggests that $^{14}N/^{15}N$ for CH_3CN is higher than values that have been previously observed and theoretically predicted for HCN and HC_3N . This may be explained by the different N_2 dissociation sources according to the altitudes, as suggested by a recent photochemical model.

Keywords: Titan, ALMA