CO₂ + O Collisions: A Grand Challenge for Upper Atmospheric Science

*Konstantinos S. Kalogerakis¹, Alexander A. Kutepov², Peter A. Panka³

1. SRI International, California, U.S.A., 2. Catholic Univ. of America, Washington DC, U.S.A., 3. NASA Goddard Space Flight Center, Maryland, U.S.A.

Infrared absorption and emission by atmospheric constituents play a crucial role in determining the atmospheric temperature profiles of Earth and the other terrestrial planets, Venus and Mars. Carbon dioxide is a key contributor to the global energy balance of all three planets, mainly through its vibrational bending mode, $CO_2(\nu_2)$, which emits radiation near 15 μ m (667 cm⁻¹). This emission is a key cooling mechanism for the middle and upper atmospheres of these three planets. Accurate knowledge of the excitation mechanism for $CO_2(\nu_2)$ and the corresponding rate is crucial for reliable modeling of these atmospheric layers.

The key process controlling the coupling of the 15- μ m radiation with the heat reservoir is excitation/quenching in collisions of CO₂(ν_2) with thermalized atomic oxygen in its ground state, O(³*P*). This process is poorly understood despite numerous studies over the past several decades. Unacceptably large discrepancies by factors of 3-4 exist between laboratory rate constant determinations for O-atom excitation/de-excitation of CO₂(ν_2) and the corresponding values retrieved by analyses of space-based atmospheric observations.

We discuss the relevant background and propose a research program that will bring together diverse expertise relevant to the theme of understanding upper atmospheric cooling and energy balance. A key focus will be to exploit the synergy of space-based observations, modeling and theoretical calculations, as well as laboratory experiments in order to resolve the long-standing problem of $CO_2 + O$ collisions as a source of CO_2 emission at 15 μ m.

Research supported in part by NASA Grants 80NSSC19K0535 and 80NSSC17K0638. PAP is a NASA Postdoctoral Program Fellow based at NASA Goddard Space Flight Center.

Keywords: Mesosphere and Lower Thermosphere, Radiative Cooling, O Atoms, Carbon Dioxide, Vibrational Energy Transfer, Upper Atmospheric Energy Budget