Energetic electron variations during magnetic storms: Comparative study between Arase observations and code coupling simulations

*三好 由純¹、Jordanova Vania²、加藤 雄人³、齊藤 慎司⁴、栗田 怜⁵、Kumar Sandeep¹、笠原 禎也⁶、 、松田 昇也⁷、小路 真史¹、土屋 史紀³、熊本 篤志³、松岡 彩子⁵、笠原 慧⁸、横田 勝一郎⁹、堀 智昭¹ 、桂華 邦裕⁸、風間 洋一¹⁰、Wang Shiang-Yu¹⁰、Jun Chae-Woo¹、三谷 烈史⁷、高島 健⁷、東尾 奈々⁷、篠原 育⁷ *Yoshizumi Miyoshi¹, Vania Jordanova², Yuto Katoh³, Shinji Saito⁴, Satoshi Kurita⁵, Sandeep Kumar¹, Yoshiya Kasahara⁶, Shoya Matsuda⁷, Masafumi Shoji¹, Fuminori Tsuchiya³, Atsushi Kumamoto³, Ayako Matsuoka⁵, Satoshi Kasahara⁸, Shoichiro Yokota⁹, Tomoaki Hori¹, Kunihiro Keika⁸, Yoichi Kazama¹⁰, Shiang-Yu Wang¹⁰, Chae-Woo Jun¹, Takefumi Mitani⁷, Takeshi Takashima⁷, Nana Higashio⁷, Iku Shinohara⁷

1. 名古屋大学宇宙地球環境研究所、2. ロスアラモス国立研究所、3. 東北大学、4. 情報通信研究機構、5. 京都大学、6. 金沢 大学、7. JAXA、8. 東京大学、9. 大阪大学、10. ASIAA

1. Institute for Space-Earth Environmental Research, Nagoya University, 2. Los Alamos National Laboratory, 3. Tohoku University, 4. NICT, 5. Kyoto University, 6. Kanazawa University, 7. JAXA, 8. The University of Tokyo, 9. Osaka University, 10. ASIAA

We simulate dynamics of the energetic electron distributions and the plasmasphere with the RAM-SCB simulation during magnetic storms, which calculates evolution of the electron distribution function and density of the thermal plasma with a self-consistent magnetic field. In the simulation of the March 2017 and September 2017 storms, we compare the simulated electron flux and thermal plasma density with the data from LEPe/MEPe/HEP/XEP and PWE/HFA. The RAM-SCB simulation reproduces successfully the observed variations of energetic electrons, such as, injections and subsequent energy dispersion spectra of electrons. Using the simulated distribution functions and the ambient density and magnetic field, we also calculate the linear-growth rate of whistler mode waves and compare them with the plasma wave observation data obtained by Arase. We also conduct a code-coupling simulation that consists of RAM-SCB and the self-consistent electron hybrid simulation as well as GEMSIS-RBW test particle simulations for wave-particle interactions.

キーワード:モデリング、波動粒子相互作用 Keywords: modeling, wave-particle interactions