The Ganymede Laser Altimeter (GALA) for the JUICE mission –overview and current status

*Enya Keigo¹, Masanori Kobayashi², Jun Kimura³, Noriyuki Namiki⁴, Hiroshi Araki⁴, Hirotomo Noda⁴, Shoko Oshigami¹, Shingo Kashima⁴, Shin Utsunomiya⁴, Ko Ishibashi², Masanobu Ozaki¹, Takahide Mizuno¹, Yoshifumi Saito¹, Kazuyuki Touhara¹, Shunichi Kamata⁵, Koji Matsumoto⁴, Kiyoshi Kuramoto⁵, Sho Sasaki³, Satoru Iwamura⁶, Yoshiaki Matsumoto⁷, Masayuki Fujii⁸, Naofumi Fujishiro⁹, Yuki Sato¹⁰, Takeshi Yokozawa¹⁰, Tsutomu Numata¹⁰, Satoko mizumoto¹⁰, Hiroyuki Mizuno¹⁰, Akihiko Sawamura¹⁰, Kazuo Tanimoto¹⁰, Hisato Imai¹¹, Hiroyuki Nakagawa¹¹, Okiharu Kirino¹¹, Hussmann Hauke¹², Kay Lingenauber¹², Reinald Kallenbach¹², Christian Althaus¹², Simone DelTogno¹², Thomas Behnke¹², Christian Huettig¹²

1. ISAS, 2. CIT, 3. Osaka Univ., 4. NAOJ, 5. Hokkaido Univ., 6. MRJ, 7. PTIJ, 8. FAM Science, 9. Astro-Opt, 10. Meisei Electric, 11. Cristal Optics, 12. DLR

We present an introduction, current status, and role of the Japan team for the Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moon Explorer (JUICE) mission. JUICE is a mission of ESA to be launched in 2022, and GALA is one of the payloads of JUICE.

Major objectives of GALA are to provide topographic data of Ganymede, the largest satellite of Jupiter, and to measure its tidal amplitudes. The latter is crucially important to detect and to characterize an underground ocean on Ganymede. Furthermore, GALA supports geological studies, e.g., identification of characterization of tectonic and cryo-volcanic regions, impact basins, and craters. GALA also provides information on surface roughness and the albedo.

For the laser altimetry, GALA emits and receives laser pulses at about 500 km altitude above Ganymede. Wavelength, energy, and repetition frequency of the laser plus are 1064 nm, 17 mJ, and 30 Hz, respectively. Reflected beam from the Ganymede surface is received by the receiver telescope with 25 cm diameter aperture, re-focused by the BEO including a narrow band-pass filter, and then detected by the APD detector.

Development of GALA is carried out in international collaboration by Germany, Japan, Switzerland, and Spain. GALA-Japan will develop the Backend Optics (BEO), the Focal Plane assembly (FPA) including an avalanche photo-diode (APD) detector, and the Analog Electronics module (AEM) in the receiver chain.

Keywords: GALA, JUICE, Jupiter, Ganymede, Laster altimeter