Al-Mg systematics for partial melting of an Allende type B CAI, Golfball

*Noriyuki Kawasaki¹, Shoichi Itoh², Naoya Sakamoto¹, Steven B. Simon³, Hisayoshi Yurimoto^{1,4}

1. Hokkaido University, 2. Kyoto University, 3. University of New Mexico, 4. ISAS/JAXA

Ca-Al-rich inclusions (CAIs) are the oldest objects formed in our Solar System [1]. Recent high-precision Al-Mg mineral isochron studies using secondary ion mass spectrometry (SIMS) revealed detailed distributions of initial ²⁶Al/²⁷Al values, (²⁶Al/²⁷Al)₀, for individual CAIs in CV chondrites [e.g. 2–4]. Igneous and non-igneous CAIs show similar variations in $({}^{26}AI/{}^{27}AI)_0$, which range from ~5.2 to ~3.4 ×10⁻⁵ [4]. These variations in (²⁶AI/²⁷AI)₀ suggest that CV CAI formation processes continued for at least ~0.4 Myr at the very beginning of the Solar System. However, at the same time, they also raise a possibility of heterogeneous distribution of ²⁶Al in the CAI-forming region [e.g. 3, 5]. In this study, we present AI-Mg systematics of relict minerals and later-crystallized minerals from multiple partial melting events in an Allende type B CAI, Golfball [6-8]. Such an approach would enable to constrain age differences between multiple melting events, regardless of the possibility of heterogeneous distribution of ²⁶Al. The Golfball CAI has a type B CAI bulk composition [6] and a unique structure [7]: a fassaite-rich mantle enclosing a melilite-rich core. Most of melilite crystals (Åk₃₀₋₇₀) occur as laths at the inclusion rim and in the core or as blocky shapes poikilitically enclosed in the fassaite grains in the core. In the core, gehlenitic melilite grains (Ak_{5-12}) are enclosed in strongly zoned (Ak_{15-70}) overgrowths with small compositional discontinuity at the boundary. These gehlenitic melilite grains (Åk₅₋₁₂) clearly could not have formed from a melt with bulk composition of Golfball or that of its core [6, 9], indicating they are relict grains that survived later melting event(s). High-precision in situ Al-Mg systematics with SIMS [3] was applied for the gehlenitic relict grains and the other melilite crystals as well as spinel, a liquidus phase. An Al-Mg isochron regression line for the data of gehlenitic relict grains and spinel gives $({}^{26}AI/{}^{27}AI)_0 = (4.41 \pm 0.22)$ $\times 10^{-5}$, while that for the other melilite crystals gives $({}^{26}AI/{}^{27}AI)_0 = (4.41 \pm 0.20) \times 10^{-5}$. These results indicate that partial melting event(s) for the Golfball CAI occurred in very short order, probably shorter than a few tens of Kyr, after a precursor formation.

References: [1] Connelly et al. (2012) *Science* 338, 651–655. [2] MacPherson et al. (2012) *EPSL* 331– 332, 43–54. [3] Kawasaki et al. (2019) *EPSL* 511, 25–35. [4] Kawasaki et al., under review. [5] Bollard et al. *GCA* 260, 62–83. [6] Simon and Grossman (2004) *GCA* 68, 4237–4248. [7] Simon et al. (2005) *MaPS* 40, 461–475. [8] Itoh et al. (2009) *MaPS* 40, Suppl., A116. [9] Beckett et al. (1999) *30th LPSC* #1920.