Equation of State for Liquid Iron under Extreme Conditions

*Yasuhiro Kuwayama¹, Guillaume Morard², Yoichi Nakajima^{3,4}, Kei Hirose^{1,5}, Alfred Q. R. Baron⁴, Saori I Kawaguchi⁶, Taku Tsuchiya⁷, Daisuke Ishikawa^{6,4}, Naohisa Hirao⁶, Yasuo Ohishi⁶

1. The University of Tokyo, 2. Laboratoire ISTERRE, Université Grenoble Alpes, 3. Kumamoto University, 4. RIKEN MDR, 5. Tokyo Institute of Technology, 6. JASRI, 7. Ehime University

The Earth' s core is composed mainly of iron and almost molten. Likewise, Mercury and Mars are also expected to have a partially molten iron core. Since density (ρ) and longitudinal sound velocity (V_p) are the primary observables of the Earth' s liquid outer core and possibly for other planets in future, laboratory measurements on these properties at relevant high-pressure conditions are of great importance to understand the core composition and dynamics of Earth and other terrestrial planets. Our knowledge for those properties of liquid iron under high-pressure and -temperature (*P-T*) conditions is, however, completely limited because of the experimental difficulties. In this study, we have determined the ρ and V_p of liquid iron up to 116 GPa and 45 GPa, respectively, via static compression in a laser-heated diamond-anvil cell (LH-DAC).

We determined the ρ of liquid iron up to 116 GPa and 4350 K based on in-situ x-ray diffraction measurements at BL10XU, SPring-8 [1]. A new analytical method was applied to derive ρ from the diffuse x-ray scattering signals from the liquid. We also obtained the V_p of liquid iron up to 45 GPa by inelastic x-ray scattering (IXS) measurements in the LH-DAC at BL43LXU, SPring-8 [2]. From our new data combined with previous shock-wave data, we obtained the $P-T-\rho-V_p-\gamma$ relation for the Earth' s entire outer core conditions. Compared to the ρ , V_p , and adiabatic bulk modulus (K_s) of liquid iron calculated along the isentrope with T_{ICB} (the temperature at the inner core boundary) = 5400 K, the Earth' s outer core have 7.5–7.6% lower ρ , 3.7–4.4% higher V_p but an almost identical K_s .

Seismology gives the density difference between the liquid and solid core at the ICB; $\Delta \rho_{ICB} = 0.55-0.82$ g/cm³ (e.g., [3]). Our results show that liquid iron is less dense than hexagonal-close-packed (hcp) iron [4] by = 0.32 g/cm³ at 330 GPa and its melting point of 6230 K [5]. This is approximately half of the observed $\Delta \rho_{ICB}$, indicating that the remaining 0.23–0.50 g/cm³ (corresponding to 1.9–4.1% of the outer core density at the ICB) should be attributed to a compositional difference between the outer and inner core. [1] N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani, and Y. Ohishi, Matter Radiat. Extrem. **5**, 018403 (2020).

[2] A. Q. R. Baron, SPring-8 Inf. Newsl. 15, 14 (2010).

[3] G. Masters and D. Gubbins, Phys. Earth Planet. Inter. 140, 159 (2003).

[4] A. Dewaele, P. Loubeyre, F. Occelli, M. Mezouar, P. I. Dorogokupets, and M. Torrent, Phys. Rev. Lett. **97**, 1 (2006).

[5] S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, and G. Morard, Science **340**, 464 (2013).

Keywords: liquid iron, equation of state, density, sound velocity, high pressure