Pore-pressure dependence of frictional properties of opal gouge at low-temperature hydrothermal conditions

*Junya Fujimori¹, Tomoya Nakanishi¹, Sayumi Sagano¹, Kyuichi Kanagawa², Michiyo Sawai²

1. Graduate School of Science and Engineering, Chiba University, 2. School of Science, Chiba University

In order to investigate the pore-pressure dependence of frictional properties at low-temperature hydrothermal conditions, we conducted triaxial friction experiments on opal gouge at a confining pressure of 150 MPa, pore water pressures P_p of 50–130 MPa, a temperature of 100°C, and axial displacement rates V_{axial} changed stepwise among 0.1, 1 and 10 μ m/s.

Slip-hardening with steady-state friction coefficient μ_{ss} up to 0.66 was observed at $P_p = 50$ MPa, while steady-state sliding with $\mu_{ss} \approx 0.6$ was observed at $P_p = 130$ MPa. Although rate-weakening as shown by an increase or decrease in μ_{ss} upon a stepwise decrease or increase in V_{axial} was observed in all experiments, the μ_{ss} changes after the V_{axial} changes were smaller at higher P_p . Thus both μ_{ss} and the degree of rate-weakening tend to decrease with increasing P_p . When fitted by the rate- and state-dependent friction constitutive law, the friction parameter *a* increases, while the friction parameter *b* does not change much, and resultantly (*a*-*b*) value increases with increasing P_p , although it is still negative at $P_p = 130$ MPa.

Our experimental results imply that at a seismogenic condition where a-b < 0, P_p increase would increase (a-b) value toward ≈ 0 and hence promote slow seismic faulting which is supposed to occur when (a-b) value is small and negative.

Keywords: frictional properties, opal gouge, pore-pressure dependence, low-temperature hydrothermal conditions