Seasonal variations of methane sources in South Asia inferred from observations of stable carbon isotope ratio of atmospheric methane

*Yukio Terao¹, Taku Umezawa¹, Manish Naja², Md. Kawser Ahmed³, Shohei Nomura¹, Toshinobu Machida¹, Motoki Sasakawa¹, Hitoshi Mukai¹, Prabir Patra⁴

1. National Institute for Environmental Studies, 2. Aryabhatta Research Institute of Observational Sciences, 3. Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka, 4. Research Institute for Global Change, JAMSTEC

Various types of methane (CH₄) sources reside in South Asia, including ruminant, rice paddy, biomass burning, fossil fuel industry, and landfills. For effective reduction of CH₄ emissions, observations of stable carbon isotope ratio of CH₄ (δ^{13} C-CH₄) play an important role. The δ^{13} C-CH₄ data provide better understanding of CH₄ emission sources because of distinct δ^{13} C-CH₄ signatures for individual source types: -60% for microbial, -40% for fossil fuel, and -25% for biomass burning sources.

Here we present the first observations of atmospheric δ^{13} C-CH₄ at two sites in South Asia. We have performed weekly air sampling at Nainital (29.36° N, 79.46° E, 1940 m a.s.l.) in the Himalaya mountain area, northern India since 2006 and at Comilla (23.43° N, 91.18° E, 30 m a.s.l.) in the paddy area, central Bangladesh since 2012. The air samples were analyzed for atmospheric GHGs and related tracers (Nomura et al., submitted to ACP). Using a newly developed measurement system for δ^{13} C-CH₄ (Umezawa et al., JMSJ, 2020), we started δ^{13} C-CH₄ analysis for air samples collected at both sites from August 2018. The observational data were grouped into three seasons for Comilla (from August to November (ASON), from December to March (DJFM) and from April to July (AMJJ)) and two seasons for Nainital (July and August (JA) and others) by considering the monsoon and agricultural cycles in the regions.

Large increases in the CH₄ concentration were observed during ASON and DJFM at Comilla. The relationship between δ^{13} C-CH₄ and the reciprocal of CH₄ concentration (Keeling plot) at Comilla inferred that the δ^{13} C-CH₄ signature of the CH₄ source was -52‰ for ASON and -45‰ for DJFM, while no significant correlation was found for AMJJ. Our result suggested that 75% of CH₄emission come from microbial sources and 19% from biomass burning during ASON, while the estimated relative contributions are 55% and 39% during DJFM, by assuming that 6% of the total CH₄ emission was from fossil fuels in Bangladesh (EDGAR V4.3.2). These estimates of contribution of biomass burnings to the total CH₄ emission were much higher than those in the EDGAR inventory, suggesting that the EDGAR inventory underestimate the CH₄ emission from biomass burnings during DJFM than ASON, consistent with the above results suggesting the large contribution of biomass burnings during DJFM. At Nainital, increases in the CH₄ concentration and decreases in δ^{13} C-CH₄ were much smaller than those at Comilla. The δ^{13} C-CH₄ signature of the cH₄ emission signature over the region.

Keywords: methane, carbon cycle, isotope, emission inventory