Study of tropospheric CS₂ photooxidation chemistry

*Yuanzhe Li¹, Kazuki Kamezaki², Sebastian Danielache²

1. Green Science And Engineering Division, Graduate School Of Science And Technology, Sophia University, 2. Department of Materials & Sciences, Faculty of Science & Technology, Sophia University

Abstract

Carbon disulfide (CS_2) is an atmospheric trace gas whose main sources in the atmosphere are from oceans and soils (Khalil et al., 1984). Anthropogenic emissions have increased in recent years, producing a strong regional distribution. CS_2 is a reactive atmospheric sulfur gas, and as such it has a relatively short lifetime, ranging from a few days to half a month (Khan et al., 2017). Its oxidation end products in the atmosphere are carbonyl sulfide (COS) and sulfur dioxide (SO₂). Therefore, CS_2 indirectly contributes to the production of sulfate aerosols, which influence atmospheric radiative properties and stratospheric ozone depletion.

The OH-initiated oxidation of CS_2 in the presence of O_2 is considered to be the main CS_2 sink pathway. By forming an intermediate SCSOH at first, followed by a series of oxidation reactions with O_2 to produce COS and SO_2 , this process removes 75⁸⁸% of atmospheric CS_2 (Khan et al., 2017). The current literature suggests that the conversion ratio of CS_2 to COS is 0.83 (Stickel et al., 1993), but this result may be underestimated because only reaction with OH radicals considered and CS_2 photochemistry is neglected.

The mechanism of CS_2 photooxidation was first proposed by Wine et al. (1981). According to the CS_2 UV-Vis absorption spectrum, there is a strong absorption band at 280°360 nm, which would first photo excite CS_2 from ground state to $CS_2(^3A_2)$ state (usually presented as CS_2^* state). Then the majority of CS_2^* particles will be de-excited into CS_2 ground state molecules after collision with air molecules (N₂, O₂ and H₂O). Because of the rapid photochemical reaction rate of CS_2 , a small portion of CS_2^* is oxidized with O₂ to produce COS and SO₂ during the pseudo-steady state process of continuous CS_2 photo excitation reaction and CS_2^* quenching reaction. In addition, the solar flux spectrum in the troposphere is strong enough to trigger the above CS_2 photochemistry.

In this study, an updated CS_2 photochemical network is studied by a 1-D atmospheric photochemical model (PATMO). Reaction path analysis is carried out using an open-source reaction network viewer (ReNView). From the simulated result, major reduced sulfur species (CS_2 , COS and SO_2) reproduce field measurements. When the zenith angle of sunlight is 0°, our result shows that the conversion ratio of CS_2 to COS is 0.87. The reaction rate *r* for the net CS_2 photo-induced oxidation and $CS_2 + OH$ reactions at 1 km are about 18 and 144 molecule cm⁻³ s⁻¹ respectively. These results indicate that, under favorable light conditions photochemistry is a relevant tropospheric sink of CS_2 .

References

Khalil, M. and Rasmussen, R. (1984). Global sources, lifetimes and mass balances of carbonyl 761 sulfide (OCS) and carbon disulfide (CS_2) in the earth's atmosphere. *Atmospheric Environment 762 (1967)*, 18(9):1805–1813.

Khan, A., Razis, B., Gillespie, S., Percival, C., Shallcross, D., Global analysis of carbon disulfide (CS2) using the 3-D chemistry transport model STOCHEM, *Aims Environ. Sci. (2017)*, *4*, 484–501.

Stickel, R. E. et al. (1993), Journal of Physical Chemistry, 97(51), pp. 13653–13661.

Wine, P. H., Chameides, W. L., Ravishankara, A. R., Potential role of CS2 photooxidation in tropospheric sulfur chemistry, *Geophys. Res. Lett. (1981)*, *8*, 543-546.

Keywords: CS2, Photochemistry, Modeling, PATMO, Sulfur chemistry