Temporal and spatial variations of the mole fraction, carbon and hydrogen isotope ratios of atmospheric methane in the Western Pacific region

*Yasuda Mahito¹, Shinji Morimoto¹, Shuji Aoki¹, Ryo Fujita², Taku Umezawa³

1. Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, 2. Department of Climate and Geochemistry Research, Meterorological Reserach Research Institute, Tsukuba Japan, 3. National Institute for Environmental Studies, Tsukuba, Japan

To understand atmospheric CH_4 variations in the Western Pacific region, we have conducted systematic observations of the CH_4 mole fractions and its carbon and hydrogen isotope ratios (d¹³C and dD) using air samples collected on board container ships that regularly sail between Japan and Australia/New Zealand. In this study, we analyzed the observation data from 2006 to 2019.

In the temperate zones of both hemispheres, clear seasonal cycles in the CH_4 mole fractions, $d^{13}C$ and dD were observed. Using an atmospheric four-box model with prescribed CH_4 sink, we estimated the contribution of CH_4 sources to the seasonal CH_4 change. The results suggest that the seasonal change in the northern hemisphere is caused by the balance between CH_4 release from biogenic CH_4 sources such as wetlands in summer and CH_4 destruction by the reaction with OH radicals that become maximum also in summer. On the other hand, the seasonal CH_4 change in the southern hemisphere is almost determined by the seasonal change in the amount of the CH_4 destruction by OH radicals.

In the Western Pacific, the CH₄ mole fractions, d¹³C and dD showed clear latitudinal gradients, with CH₄ mole fraction increasing and d¹³C and dD decreasing from south to north throughout a year. These observational facts suggest that there are isotopically lighter CH₄ sources (microbial origin) in the northern hemisphere. The latitudinal distributions of the CH₄ mole fractions and d¹³C obtained in this study were compared with those observed by the National Oceanic and Atmospheric Administration (NOAA/GMD) at background sites far from CH₄ source region (hereafter called as NOAA sites). During the boreal summer, the CH₄ and d¹³C in the Western Pacific showed lower and higher values, respectively, compared to those at the NOAA sites, suggesting that the Western Pacific region could be more strongly affected by the destruction by OH radicals. On the other hand, in the boreal winter, the CH₄ mole fractions were higher in the Western Pacific than the background NOAA sites. This would be due to the prevailing westerly winds in the winter season, which transported the air-mass strongly influenced by land CH₄ sources into the Western Pacific region.

The CH₄ mole fractions observed in the Western Pacific, at Syowa Station(69.0° S, 39.4° E) and Ny-Alesund(78.6° N, 11.6° E) showed increasing trends after 2006. In contrast, d¹³C and dD decreased after 2006.We employed the four-box model to investigate the cause of the long-term CH₄ variability. When the CH₄ destruction rate by reaction with OH radical is fixed after 2006, an increase in CH₄ emission after 2006 and decreases in d¹³C and dD of aggregated CH₄ sources in all latitudinal bands after 2007 are required to reproduce the observed CH₄, d¹³C and dD values. This suggests that biogenic CH₄ emission has increased since 2006.

Keywords: Methane, Isotopic ratio, Western Pacific