Variations of atmospheric carbon dioxide and its radioisotope in the arctic region

*Hikaru Sekine¹, Shinji Morimoto¹, Chinatsu Yamada¹, Daisuke Goto², Masayo Minami³, Toshio Nakamura³, Shuji Aoki¹

1. Center for Atmospheric and Oceanic studies, 2. National Institute of Polar Research, 3. Institute for Space-Earth Environmental Research

To elucidate fossil fuel CO_2 input into the atmosphere, we analyzed temporal variations of CO_2 , O_2 and CO concentration and $^{14}CO_2$ at Ny Alesund, Svalbard (79°N, 13°E) since 2012. Short-term variations of the atmospheric CO_2 concentration on the scale of hours to days were extracted from the Ny Aleusnd data at first and the durations of higher CO_2 with higher CO_2 and lower O_2 were defined as CO_2 event in this study. Then, using a Lagrangian particle dispersion model and fossil fuel CO_2 emission database, we estimated the amount of CO_2 increase during the CO_2 events and compared it with the observation. As a result, the modeled values well reproduced the observations for the CO_2 events with air mass inflow from European regions, but the modeled values were lower than the observed values for CO_2 events from northern Russia. Using the flask observations of atmospheric $^{14}CO_2$ in the case of the CO_2 event from northern Russia, we estimated that the fossil fuel CO_2 was responsible to the CO_2 event. In order to evaluate the amount and distribution of the CO_2 emission by fossil fuel combustion, continuous observations of CO_2 , O_2 and CO_2 and systematic $^{14}CO_2$ observation are valuable.

Keywords: carbon dioxide, global warming, atmospheric observations