A modeling study of effective radiative forcing and climate response due to increased methane concentration

*Bing Xie ${ }^{1,2}$, Hua Zhang ${ }^{1,2}$, Dong-dong Yang ${ }^{3}$, Zhi-li Wang ${ }^{4}$
1. Laboratory for Climate Studies of China Meteorological Administration, National Climate Center, China Meteorological Administration, 2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science \& Technology, 3. College of Atmospheric Science, Nanjing University of Information Science \& Technology, 4. State Key Laboratory of Severe Weather \& Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences

An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing (ERF) due to increased methane concentration since pre-industrial times and its impacts on climate. The ERF of methane from 1750 to 2011 was $0.46 \mathrm{~W} \mathrm{~m}^{-2}$ by taking it as a well-mixed greenhouse gas, and the inhomogeneity of methane increased its ERF by about $0.02 \mathrm{~W} \mathrm{~m}^{-2}$. The change of methane concentration since pre-industrial led to an increase of $0.31^{\circ} \mathrm{C}$ in global mean surface air temperature and $0.02 \mathrm{~mm} \mathrm{~d}^{-1}$ in global mean precipitation. The warming was prominent over the middle and high latitudes of the Northern Hemisphere (with a maximum increase exceeding $1.4^{\circ} \mathrm{C}$). The precipitation notably increased (maximum increase of $1.8 \mathrm{~mm} \mathrm{~d}^{-1}$) over the ocean between $10^{\circ} \mathrm{N}$ and $20^{\circ} \mathrm{N}$ and significantly decreased (maximum decrease $>-0.6 \mathrm{~mm} \mathrm{~d}^{-1}$) between $10^{\circ} \mathrm{S}$ and $10^{\circ} \mathrm{N}$. These changes caused a northward movement of precipitation cell in the Intertropical Convergence Zone (ITCZ). Cloud cover significantly increased (by approximately 4\%) in the high latitudes in both hemispheres, and sharply decreased (by approximately 3\%) in tropical areas.

Keywords: Methane, Effective radiative forcing, Climate change

