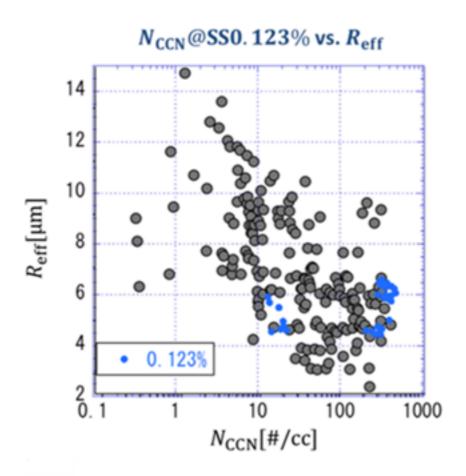
東京スカイツリーで測定された都市上空の雲凝結核の特性 Characteristics of Cloud Condensation Nuclei over the Urban Areas Measured at Tokyo Skytree

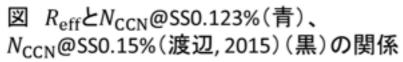
*前田 麻人¹、佐藤 光之介¹、三浦 和彦¹、岩本 洋子³、三隅 良平² *Asato Maeda¹, Konosuke Sato¹, Kazuhiko Miura¹, Yoko Iwamoto³, Ryohei Misumi²

1. 東京理科大学、2. 防災科学研究所、3. 広島大学

1. Tokyo University of Science, 2. National Research Institute for Earth Science and Disaster Resilience, 3. Hirosuma University

大気エアロゾルが気候に与える影響は直接効果と間接効果(雲調整効果)がある。直接効果とはエアロゾル が太陽光を直接散乱・吸収する効果、間接効果とは雲を形成したときに雲凝結核(CCN)として働き、雲の光 学特性や寿命を変化させる効果である。放射強制力に与える雲調整効果に関しては科学的理解度が低く、大き な不確かさを持っている(IPCC, 2013)。したがって、多くの地域でエアロゾルのCCN特性を測定することが必 要となっている。世界的に定点観測の少ない都市上空のCCN特性を調査するため、本研究では、東京スカイツ リーにおいてCCNを観測した。


観測は、2016年6月3日[~]6月30日、東京スカイツリー458 m(35.71°N, 139.81°E)地点において 行った。雲凝結核計(CCNC)、走査型移動度粒径分布測定器(SMPS)を用いてCCN数濃度(*N*_{CCN})とCN数濃度 (*N*_{CN})を同時に測定した。得られた結果から、CCN活性比を求めることができる。本研究では拡散ドライ ヤーを通して大気試料の相対湿度を30%以下にして4段階の過飽和度(SS%)の*N*_{CCN}、*N*_{CN}とその粒径分布を 測定し、κ-ケーラー理論(Petters and Kreidenweis, 2007)を用いて吸湿性パラメータ(κ)を算出した。また Fog Monitorで測定した霧粒数濃度(*N*_{Fog})、霧粒の有効半径(*R*_{eff})とあわせて解析を行った。東京スカイツ リーで得られた結果を同様の観測が行われた富士山頂の観測データ(渡辺, 2015)と比較した。


東京スカイツリーでは富士山頂と比べると全体的にN_{CCN}は大きく、κは小さいことが確認できた。また気塊の輸送起源によるCCN特性のはっきりとした傾向は見られなかった。

霧雨を含まない雲で覆われている期間のデータを用い、CCN特性について調べた結果、 N_{Fog} と N_{CCN} との間に正の相関はなかった。また、Twomey効果(Twomey,1959)として知られる微物理的関係のように、 R_{eff} と N_{CCN} との間に負の相関はなかった。これは、東京スカイツリーでは N_{CCN} の変動が小さかったためと考えられる。過飽和度0.12%における R_{eff} と N_{CCN} の関係を富士山頂の結果と比較したところ、富士山頂で得られた R_{eff} と N_{CCN} との間の負の相関の一部とみなすことができた。

キーワード:雲凝結核数濃度、凝結核数濃度、有効半径、霧粒数濃度

Keywords: cloud condensation nuclei number concentration, condensation nuclei number concentration, effective radius, fog droplet number concentrations

