Variation trend of 17O-excess in an Arctic ice core

*Akane Tsushima1, Vasileios Gkinis2, Kumiko Goto-Azuma3, Sumito Matoba4, Hideaki Motoyama3

Ice cores obtained from glaciers and ice sheets are important archives for reconstructing changes in the paleoclimate. The most important climate changes, such as the variation in temperature, precipitation, and the hydrological cycle, are reconstructed from stable water isotope ratios (δ^{18}O, δD, and a second-order parameter, the d-excess, defined as d-excess = δD − 8 δ^{18}O) measured in ice cores.

With the improvement of water isotope analyzers, the ability to measure δ^{17}O in water with high precision provided another second-order parameter, the 17O-excess, defined as 17O-excess = $\ln \left(\delta^{17}$O+1 \right) − 0.528 $\ln(\delta^{18}$O+1). Previous studies reported that 17O-excess in polar snow is mainly controlled by the relative humidity in the water vapor source region, therefore expected as a new proxy of past climate change. However, at the present, there are few studies of 17O-excess in ice core, and therefore an understanding of variation factor of that is incomplete.

In this study, we analyzed δ^{17}O and 17O-excess in an ice core which was drilled in Alaska. We also discussed the variation factors of those associated with environmental change.

Keywords: ice core, Arctic region, 17O-excess