High-resolution 32/33/34/36SO2 absorption cross-section measurements for revealing Archean atmospheric composition

*Yoshiaki Endo¹, Moeko Ogawa², Masumi Shinkai², Sebastian Danielache^{2,3}, Yuichiro Ueno^{1,3,4}

1. Tokyo Institute of Technology, 2. Sophia Univ., 3. ELSI, 4. JAMSTEC

Many geological and geochemical records suggest a reducing Archean atmosphere. Revealing Archean atmospheric composition is important proxy for the understanding of the origin and evolution of life. The discovery and explanation of sulfur mass-independent fractionation (S-MIF) signatures in Archean sedimentary rocks possess as a key to unravel Archean atmospheric composition. Our SO₂ photochemical experiments generated large S-MIF (Δ^{33} S > +5%) and reproduced basic character of the Archean S-MIF signature (Δ^{36} S/ Δ^{33} S = -1) under a specific condition for the first time (Endo et al. 2016). Self-shielding of SO₂ photodissociation and intersystem crossing (ISC) form singlet SO₂ to triplet SO₂ are shown as key mechanisms. Next, we simulated large S-MIF signature (Δ^{33} S > +5%) in our box numerical model, and we showed that Archean S-MIF trend (Δ^{36} S/ Δ^{33} S = -1) can be explained when there are several ppm level of SO₂ (like the plume of volcanic gas) and 2% (2 kPa) CO or 3% (3 kPa) CH₄ in the atmosphere. But box model' s calculation is not completely correct because photochemical reaction rate and fractionation factor (such as self-shielding) strongly depends on the altitude. Then we need to develop 1-D atmospheric model.

Our group's new 1-D model which focuses on UV spectra because reactions and fractionation factor (such as self-shielding) change delicately as a function of irradiative photon flux. Fractionation factor of photodissociation can be calculated by isotopologue cross-section and irradiative photon flux. Then in order to develop 1-D atmospheric model including sulfur isotopes, SO₂ isotopologue cross-sections ($^{32/33/34/36}SO_2$) are necessary. Although SO₂ isotopologue cross-section have been measured, they are too low-resolution to estimate self-shielding (Danielache et al. 2008, Endo et al. 2015). Here, we report preliminary results of high resolution ($^{-1}$ cm⁻¹) $^{32/33/34/36}SO_2$ absorption cross-sections and estimation of fractionation factor including self-shielding effect.

Referces: Endo et al. (2016), EPSL, Danielache et al. (2008), JGR Atmospheres, Endo et al. (2015), JGR Atmospheres

Keywords: Archean atmosphere, Sulfur isotope, Photochemistry