Fine- and micro-scale observations in the Oyashio in winter

*Takahiro Tanaka¹, Ichiro Yasuda¹, Yasutaka Goto¹, Jun Nishioka²

1. Atmosphere and Ocean Research Institute University of Tokyo, 2. Institute of Low Temperature Science, Hokkaido University

During the R/V Hakuho-maru cruise in Mar. 2015, fine- and microstructure measurements in the Oyashio water were conducted using a CTD/LADCP and vertical microstructure profiler in order to know the spatial variability of wintertime turbulence field, which has not been reported so far at this area. At a station off the shelf break, whose bottom depth is about 530 m, one-day repeated observations were also conducted to know the temporal variability of turbulence intensity.

The energy dissipation rate, \(\varepsilon \), was patchily elevated to \(O(10^{-8}) \) [W/kg] and was typically \(O(10^{-10} - 10^{-9}) \) [W/kg] in the upper 400 m depth (less dense than 27.0 \(\sigma_\theta \)) across the Oyashio. Off the shelf break, where the one-day observation was conducted, strong turbulence with \(\varepsilon = O(10^{-7}) \) [W/kg] and \(K_\rho = O(10^{-3} - 10^{-2}) \) [m²/s] was observed at around 60 - 70 m depth (26.4 \(\sigma_\theta \)), and \(\varepsilon = O(10^{-8}) \) [W/kg] and \(K_\rho = O(10^{-3}) \) [m²/s] at around 350 m depth (26.7 \(\sigma_\theta \)) corresponding to the period of isopycnal heaving of about 50 m. This strong mixing around 26.4 \(\sigma_\theta \) (26.7 \(\sigma_\theta \)) was enhanced when the along-isobath (down-sill) flow and its associated shear was strengthened. Harmonic analysis shows that the diurnal tidal flow was large in the upper 50 m, while the mean and semi-diurnal flow were also important at around 26.7 \(\sigma_\theta \) suggesting that the tidal flow may impact on the turbulence field at this place.

Keywords: turbulent mixing, Oyashio