In situ X-ray diffraction studies of hydrous aluminosilicate at high pressure and temperature

Ryota Abe ${ }^{1}$, Yuki Shibazaki ${ }^{2}$, Shin Ozawa ${ }^{1}$, Itaru Ohira ${ }^{1}$, Hiromu Tobe ${ }^{1}$, ${ }^{*}$ Akio Suzuki ${ }^{1}$
1. Department of Earth and Planetary Materials Science, Faculty of Science, Tohoku University, 2. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University

Water is transported into the deep Earth' s interior by hydrous minerals in the descending slabs. Previous studies showed that hydrous aluminosilicate would be stable in the mid-ocean ridge basalt and the sedimentary layer of subducting slab. Discovery of phase egg in the diamond inclusion also supports that hydrous aluminosilicate could exist in the earth' s deep interior. Topaz-OH $\left(\mathrm{Al}_{2} \mathrm{SiO}_{4}(\mathrm{OH})_{2}\right)$ is stable in the pressure range of 8-12 GPa and transforms to Topaz-OH II and AI-phase D under high pressure condition. However, the phase relation of $\mathrm{Al}_{2} \mathrm{SiO}_{4}(\mathrm{OH})_{2}$ has not been clarified yet.
In order to determine the phase relation of hydrous alminosilicate experimentally, we have conducted an in situ X-ray diffraction study at high pressure and temperature using Kawai multi-anvil high pressure apparatus and intense X -ray of synchrotron radiation at SPring-8. The truncated edge length of the anvil is 3 mm . The pressure medium was made of ZrO_{2} and Co -doped MgO . We used a TiB_{2} tube heater with a Boron epoxy window for the X-ray path and the W3\%Re-W25\%Re thermocouple for monitoring temperature of the experiments. Pressure was calculated from the equation of state of gold. We found that hydrous phase of $\delta-\mathrm{AlOOH}$ and stishovite were stable in the pressure range of 22-30 GPa and the temperature range of $800-1500{ }^{\circ} \mathrm{C}$. Al-phase D was found at $24 \mathrm{GPa}, 1500{ }^{\circ} \mathrm{C}$ coexisting with phase egg. AI/Si ratio of Al-phase D was approximately 1.85 , which was less than ideal composition.

Keywords: hydrous alminosilicate, synchrotron X-ray diffraction, lower mantle, subducting slab

