Characteristics of Downburst Occurrences Derived from
Ground-based Lightning and Meteorological Observations

Chiharu Shimizu¹, *Mitsuteru Sato², Yukihiro Takahashi²

1. Department of Cosmosciences, Hokkaido University, 2. Faculty of Science, Hokkaido University

A prediction of the downburst occurrence using the existing meteorological observation networks is very
difficult because the typical spatial and temporal scale size of downbursts are ~1.8 km and a few minutes,
respectively. Once a downburst occurs in a metropolis, various infrastructures suffer huge damage. For
this reason, a prediction of the downburst occurrence based on other observation methods is desired. At
the convection cell accompanied by a downburst, active lightning activities are confirmed in many cases.
In addition to this, we expect that not only the lightning occurrence number but also the charge amount
neutralized by lightning discharges may be related to the vertical convection intensities in thunderclouds.
So, the purpose of this study is (1) to develop a new method to estimate charge amounts neutralized by
lightning discharges, (2) to clarify the relation between lightning activities and downburst occurrences,
and (3) to identify the characteristics of downburst occurrences that can be used for the prediction of the
downburst occurrence. As a first step, we have analyzed ELF data obtained at Onagawa and Kuju stations
and compared ELF waveforms with the lightning current waveforms measured by the Rogowski coil at Mt.
Ogami, Niigata. It is found that the cross correlation coefficient between these two waveforms became
0.80, which implies that the dominant component of the observed ELF waves is not the radiative but
induction magnetic fields. We further estimated an empirical equation to calculate the charge amounts
neutralized by lightning discharges (Q) from the time-integrated ELF magnetic field amplitude (∑B). Using
this empirical equation, it is first possible to estimate charge amounts of any lightning discharges
occurred within ~1000 km distance from the observation site. As a next step, we analyzed 8 downburst
events occurred in 2015 in Japan using ELF data, JLDN (Japan Lightning Detection Network) data,
meteorological (C-band radar, AMEDAS) data provided by JMA, and POTEKA data provided by Meisei
Electric Co., Ltd. It is found that the occurrence number of –CG discharges and the lightning charge
amounts reached their peak just before/after the occurrence of the downburst in many cases and that the
temporal variation of the lightning charge amounts is comparable to that of rain volumes. Thus, we can
deduce that these characteristics of lightning activities are the good proxy for the prediction of the
downburst occurrence. At the presentation, we will show the relation between ELF waveforms and
lightning current waveforms and the results of lightning and meteorological data analyses in the
downburst events in detail.

Keywords: lightning, downburst, prediction