Seasonal variation of O₃ flux in red pine forest

Kaoru Sugiyama¹, *Ryuichi Wada¹, Satoru Takanashi², Takafumi Miyama², Takashi Nakano³, Tomoki Mochizuki⁴, Akira Tani⁴, Seiichiro Yonemura⁵, Kentaro Takagi⁶, Yutaka Matsumi⁷, Masahito Ueyama⁸, Yuzo Miyazaki⁶

Teikyo University of Science, 2. Forestry and Forest Products Reaearch Institute, 3. Mount Fuji Research Institute,
University of Shizuoka, 5. National Agriculture and Food Research Organization, 6. Hokkaido University, 7. Nagoya University, 8. Osaka Prefecture University

The emission and absorption of trace gases at the biosphere affects to atmospheric chemistry, and thus it makes influence with potential indirect effects on carbon cycle and climate (Ollinger et al., 2002). We observed O_3 flux with the gradient method at a meteorological tower in red pine forest (Site Code: FJY) through 2016. We also measured CO_2 flux at the same meteorological tower for validation of the system by comparison with CO_2 flux determined by the eddy covariance method.

The heights of the forest canopy and the meteorological tower were about 25 m and 32 m.

Concentrations of O_3 and CO_2 were measured at two heights (26 m and 34 m) above the canopy by an ultraviolet absorption O_3 analyzer (Thermo: 49C) and an infrared absorption CO_2 analyzer (Licor:LI-820). The O_3 instrument was calibrated before the observation, and the CO_2 instruments were calibrated every three weeks at the observation site. The air was sampled every 300 seconds from each two vertical heights and supplied to the analytical instruments through PFA tube. Concentration of CO_2 was also measured by an infrared absorption CO_2 analyzer (Licor: LI-6262) at 26.5 m to determine CO_2 fluxes by the eddy covariance method. Wind speed and wind direction were measured at 26.5 m and they were used to obtain fluxes by the gradient and eddy covariance methods.

The CO_2 fluxes in the day time (9:00-16:00) in 2016 were observed with the gradient and the eddy covariance method as -0.10±0.08 mol m⁻² d⁻¹ and -0.25±0.16 mol m⁻² d⁻¹, respectively. The CO_2 flux obtained by the gradient method was slightly lower and more scattered than CO_2 flux obtained by the eddy covariance method; however these values reasonably agreed. We made sure the flux observation system with gradient method worked properly.

 O_3 concentration showed a seasonal variation and was in a maximum in May. However the primary result showed that O_3 deposition in the red pine forest in the day time (9:00-16:00) had a maximum in July. The peak of O_3 deposition delayed to the peak of O_3 concentration, which was also obserbed in mixed forests of conifers and broad leaved trees inTeshio, Japan (K. Takagi, 2016).

References:

Ollinger et.al., 2002, Global Change Biology 8, 545-562.

K. Takagi, 2016, Annual meeting in Japan Society of Atmospheric Environment, 150.

Keywords: ozone, flux, forest