The FORMOSAT-3/COSMIC Global Scintillation Model

*Jann-Yenq Liu^{1,2}, Shih-Ping Chen¹, Yang-Yi Sun³

1. Graduate Institute of Space Science, National Central University, Taoyuan city, Taiwan, 2. Center for Space and Remote Sensing Research, National Central University, Taoyuan city, Taiwan, 3. Kyushu University, Department of Earth and Planetary Science, Fukuoka, Japan

Humans heavily rely on Global Navigation Satellite System (GNSS) for applications of satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations could severely impact on these applications. In this study, an empirical ionosphere scintillation model of the globe is constructed with S4-index data of FORMOSAT-3/COSMIC (F3/C) during 2007-2014 (hereafter F3CGS4 model). The model describes the S4-index as a function of diurnal variations in local time, seasonal variations in day of year, geographic variations in dip-latitude, and solar activities in EUV flux index PF10.7. The model well reproduces the F3/C S4-index observations, and yields good agreements with results of ground-based receiving satellite signals. These confirm that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.

Keywords: FORMOSAT-3/COSMIC, S4, Scintillation