Temporary Capture of Small Bodies by an Eccentric Planet

*Arika Higuchi¹, Shigeru Ida²

1. Tokyo Institute of Technology, 2. Earth-Life Science Institute

We have investigated the probability of temporary capture of asteroids in eccentric orbits by a planet in a circular or an eccentric orbit by analytical and numerical calculations. We found that in the limit of the circular orbit, the capture probability is ~0.1% of encounters to the planet's Hill sphere, independent of planetary mass and semimajor axis. In general, the temporary capture becomes difficult, as the planet's eccentricity (e_p) increases. We found that the capture probability is almost independent of e_p until a critical value (e_p^{c}) that is given by ~5 times of Hill radius scaled by the planet's semimajor axis. For $e_p > e_p^{c}$, the probability decreases approximately in proportional to e_p^{-1} . The current orbital eccentricity of Mars is several times larger than e_p^{c} . However, since the range of secular change in Martian eccentricity overlaps e_p , the capture of minor bodies by the past Mars is not ruled out.

Keywords: Martian moons, asteroids