Temporary Capture of Small Bodies by an Eccentric Planet

*Arika Higuchi ${ }^{1}$, Shigeru Ida ${ }^{2}$

1. Tokyo Institute of Technology, 2. Earth-Life Science Institute

We have investigated the probability of temporary capture of asteroids in eccentric orbits by a planet in a circular or an eccentric orbit by analytical and numerical calculations. We found that in the limit of the circular orbit, the capture probability is ${ }^{\sim} 0.1 \%$ of encounters to the planet's Hill sphere, independent of planetary mass and semimajor axis. In general, the temporary capture becomes difficult, as the planet's eccentricity $\left(e_{p}\right)$ increases. We found that the capture probability is almost independent of e_{p} until a critical value ($e_{p}{ }^{c}$) that is given by ${ }^{\sim} 5$ times of Hill radius scaled by the planet's semimajor axis. For $e_{p}>e_{p}{ }^{c}$, the probability decreases approximately in proportional to e_{p}^{-1}. The current orbital eccentricity of Mars is several times larger than $e_{p}{ }^{c}$. However, since the range of secular change in Martian eccentricity overlaps $e_{p^{\prime}}$, the capture of minor bodies by the past Mars is not ruled out.

Keywords: Martian moons, asteroids

