Time-resolved analysis of shock-driven structure transformation of forsterite single crystals using power laser and x-ray free electron laser

*Takuo Okuchi¹, Narangoo Purevjav¹, Norimasa Ozaki², Yusuke Seto³, Yoshinori Tange⁴, Toshimori Sekine⁵, Takeshi Matsuoka⁶, Kenjiro Takahashi⁶, Yuichi Inubushi⁴, Makina Yabashi⁷, Kazuo Tanaka², Ryosuke Kodama^{2,6}

1. Institute for Planetary Materials, Okatama Univ., 2. Faculty of Engineering, Osaka Univ., 3. Faculty of Science, Kobe Univ., 4. JASRI/SPring-8, 5. Faculty of Science, Hiroshima Univ., 6. Photon Pioneers Center, Osaka Univ., 7. RIKEN SPring-8 Center

We analysed time-resolved structure evolution of shock-compressed single crystals of forsterite using power laser and x-ray free electron laser at SACLA, SPring-8. It was indicated from these results that forsterite structure (orthorhombic) transforms into ringwoodite structure (cubic spinel) in very fast time scale of few nanoseconds, which has implication on the origin of ringwoodite observed in meteorites.

Keywords: forsterite, ringwoodite, x-ray free electron laser , laser-driven shock compression, high-speed collision