Constraint on composition and size of lunar Fe-Ni-S core

*Hidenori Terasaki1, Keisuke Nishida2, Satoru Urakawa3, Yuta Shimoyama1, Yuji Higo4

1. Graduate School of Science, Osaka University, 2. Graduate School of Science, The University of Tokyo, 3. Graduate School of Natural Science, Okayama University, 4. JASRI

In order to constrain S content in the lunar core and to estimate the structure of lunar interior, we compared measured V_p and r data of liquid Fe-alloys at the lunar core condition with observed geophysical data. We have measured sound velocity and density of liquid Fe-Ni-S using ultrasonic pulse-echo and X-ray absorption methods combined with multianvil apparatus up to 14 GPa. The obtained sound velocity and bulk modulus significantly decreased with increasing S content at the lunar core condition (5 GPa, 1800 K). Estimated Fe-Ni-S lunar core model from the present elastic properties will be compared with the previous interior models of Moon (Garcia et al. 2011 and Weber et al. 2011).

Keywords: Core, Moon, Sound velocity