Fate of MgSiO₃ post-perovskite in super-Earths

*Koichiro Umemoto¹, Renata Wentzcovitch², Shunqing Wu³, Kai-Ming Ho³, Min Ji³, Cai-Zhuang Wang³

1. Earth-Life Science Institute, Tokyo Institute of Technology, 2. Columbia Universitity, 3. Iowa State University

 $MgSiO_3$ post-perovskite (ppv) is the final form of $MgSiO_3$ in the Earth. However, what happens in super-Earths in which pressure and temperature are much higher than those of the Earth's lower mantle? Understanding of fate of $MgSiO_3$ ppv under ultrahigh pressures is crucial for nature of interiors of super-Earths. Computational studies so far have predicted several pressure-induced dissociations of $MgSiO_3$ in super-Earths. Recent studies agree that $MgSiO_3$ ppv undergoes three-stage dissociations involving MgO, SiO_2 , Mg_2SiO_4 , and $MgSi_2O_5$ [1,2]. Based on these studies, we reinvestigate the high PT phase diagram of $MgO-SiO_2$ system and we propose a new phase transition in $MgO-SiO_2$ system in super-Earths. Clapeyron slope of the new transition and thermodynamic quantities calculated for these phases should provide fundamental information for numerical simulation of mantle dynamics in super-Earths.

[2] H. Niu, A. R. Oganov, X. Q. Chen, and D. Li, Sci. Rep. 5, 18347 (2015).

Keywords: MgSiO3 post-perovskite, pressure-induced phase transition, first-principles calculation, terrestrial exoplanets