Effect of alkalis on the reaction of clinopyroxene with Mg-carbonates at 6 GPa: Implications for partial melting of carbonated Iherzolite

Shatskiy Anton^{1,2}, Ivan Podborodnikov^{1,2}, *Konstantin Litasov^{1,2}, Artem Chanishev^{1,2}, Anton Arefiev^{1,2}, Igor Sharygin¹, Nikolay Karmanov¹, Eiji Ohtani^{1,3}

1. V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science, Siberian Branch, , 2. Novosibirsk State University, 3. Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University

The reaction between clinopyroxene and Mg-carbonate is supposed to define the solidus of carbonated Iherzolite at pressures exceeding 5 GPa. To investigate the effect of alkalis on this reaction, subsolidus and melting phase relations in the systems $CaMgSi_2O_6 + 2MgCO_3$ (Di + 2Mgs), $CaMgSi_2O_6 + NaAlSi_2O_6 + NaAlSi_2O_6 + NaAlSi_2O_6$ $2MgCO_3$ (Di + Jd + 2Mgs), CaMgSi₂O₆ + Na₂Mg(CO₃)₂(Di + Na₂Mg), and CaMgSi₂O₆ + K₂Mg(CO₃)₂(Di + K₂)₂(Di + K₂)₂ Mg) have been examined at 6 GPa. The results are summarized in Fig. 1. The Di + 2Mgs system begins to melt at 1400 °C via the approximate reaction CaMgSi₂O₆ (clinopyroxene) + 2MgCO₃ (magnesite) = $CaMg(CO_3)_2$ (liquid) + $Mg_2Si_2O_6$ (orthopyroxene) leading to essentially carbonate liquid (L) with composition of $Ca_{0.56}Mg_{0.44}CO_3 + 3.5 \text{ mol}\% SiO_2$. The initial melting in the Di + Jd + 2Mgs system occurs at 1350 °C via the reaction 2CaMgSi₂O₆ (clinopyroxene) + 2NaAlSi₂O₆ (clinopyroxene) + 8MgCO₃ $(magnesite) = Mg_3Al_2Si_3O_{12} (garnet) + 5MgSiO_3 (clinopyroxene) + 2CaMg(CO_3)_2 (liquid) + Na_2CO_3 (liquid)$ + $3CO_2$ (liquid and/or fluid) yielding the carbonate liquid with approximate composition of $10Na_2CO_3$. $90Ca_{0.5}Mg_{0.5}CO_3 + 2 \text{ mol}\% \text{ SiO}_2$. The systems Di + Na₂Mg and Di + K₂Mg start to melt at 1100 and 1050 ° C, respectively, via the reaction CaMgSi₂O₆ (clinopyroxene) + 2(Na or K)₂Mg(CO₃)₂ (solid) = Mg₂Si₂O₆ $(orthopyroxene) + (Na \text{ or } K)_4 CaMg(CO_3)_4$ (liquid). The resulting melts have alkali-rich carbonate compositions of $Na_2Ca_{0.4}Mg_{0.6}(CO_3)_2 + 0.4 \text{ mol}\% SiO_2 \text{ and } 43K_2CO_3 \cdot 57Ca_{0.4}Mg_{0.6}CO_3 + 0.6 \text{ mol}\% SiO_2.$ These melts do not undergo significant changes as temperature increases to 1400 °C retaining their calcium number, high Na₂O, K₂O and low SiO₂. We suggest that the clinopyroxene–Mg-carbonate reaction controlling the solidus of carbonated lherzolite is very sensitive to the carbonate composition and shifts from 1400 °C to 1050 °C at 6 GPa yielding K-rich carbonate melt if subsolidus assemblage contains K₂ Mg(CO₃)₂ compound. Such a decrease in solidus temperature has been observed previously in the K-rich carbonated lherzolite system. Although a presence of eitelite, Na₂Mg(CO₃)₂, has a similar effect, this mineral cannot be considered as a potential host of Na in carbonated lherzolite as far as whole Na added into the system dissolves as jadeite component in clinopyroxene if bulk Al/Na 1. The presence of jadeite component in clinopyroxene has little impact on the temperature of the solidus reaction decreasing it to 1350 °C at 6 GPa.

This work was supported by Russian Science Foundation (project No 14-17-00609) and performed under the program of Ministry of education and science of Russian Federation (No 14.B25.31.0032).

Fig. 1. Modal abundances of phases present as a function of temperature in the systems $CaMgSi_2O_6 + 2MgCO_3$ (a), $CaMgSi_2O_6 + NaAlSi_2O_6 + 2MgCO_3$ (b), $CaMgSi_2O_6 + Na_2Mg(CO_3)_2$ (c), and $CaMgSi_2O_6 + K_2 Mg(CO_3)_2$ (d) at 6.0 GPa. Modes are in mol% were determined from the bulk compositions of starting mixtures and compositions of phases measured by electron microprobe.

Keywords: Alkalis, Clinopyroxene, Mg-carbonates, High pressure and temperature, solidus, phase relations

