CaO$_8$ and MgO$_8$ clustering in Grs$_{50}$Prp$_{50}$ garnet in diamond-bearing dolomite marble from the Kokchetav Massif

*Tomohiro Takebayashi1, Takeaki Saito2, Kunihiko Sakamaki1, Hiroshi Suzuki2,1, Yoshihide Ogasawara2,1

1. Department of Earth Sciences, Resources and Environmental Engineering, Graduate school of Creative Science and Engineering, Waseda University, 2. Department of Earth Sciences, Waseda University

Grossular-pyrope garnet (ca. Grs$_{50}$Prp$_{50}$) has long been attracted about crystal chemistry, mixing properties, and P-T stabilities. Many experimental and thermodynamic studies on grossular-pyrope garnet have been conducted (e.g., Ganguly et al., 1996; Geiger, 2013; Du et al., 2016). Garnet having near the Grs$_{50}$Prp$_{50}$ composition is extremely rare in nature. Only two occurrences have been reported, so far; (1) xenocrysts in the kimberlite from Garnet Ridge, Arizona (Wang et al., 2000) and (2) diamond-bearing dolomite marble from the Kokchetav UHP Massif, Kazakhstan (e.g., Ogasawara et al., 2000; Sobolev et al., 2001). This strange garnet from the Kokchetav Massif is a main constituent silicate mineral of dolomite marble (P > 6 GPa, T = ca. 1000 °C) and is a main host mineral of abundant microdiamond (Ogasawara et al., 2000; 2005). This garnet is chemically homogeneous and has its composition range: Grs: 43-46, Prp: 39-42, and Alm: 10-16 mol%. The closest composition to Grs$_{50}$Prp$_{50}$ is Grs$_{44}$Prp$_{42}$Alm$_{10}$. No exsolution and no symplectite were observed.

We conducted laser Raman spectrometry on this Grs$_{50}$Prp$_{50}$ garnet in the Kokchetav UHP dolomite marble. Among the obtained Raman bands at 366, 556, and 903 cm$^{-1}$, we focused on the band at 366 cm$^{-1}$ that was assigned to $R(SiO_4)^{4-}$. FWHM of this band was significantly large (24.5 cm$^{-1}$), compared to those of Prp (14.3 cm$^{-1}$ at 365 cm$^{-1}$) and Grs (14.0 cm$^{-1}$ at 372 cm$^{-1}$). Such a large FWHM of Grs$_{50}$Prp$_{50}$ garnet suggested that two kinds of $R(SiO_4)^{4-}$ bands corresponding to Grs and Prp were obtained as one overlapped broad band because the peak positions of both bands are very close. The synthesized band from Grs and Prp end-member was well fitted to the observed band.

In the crystal structure of garnet, a SiO$_4$ tetrahedron is surrounded by six dodecahedra XO$_8$(Geiger, 2013). A SiO$_4$ tetrahedron of grossular surrounded by six CaO$_8$ and that by six MgO$_8$. The observed overlapping of two $R(SiO_4)^{4-}$ bands corresponding to Grs and Prp indicates two modes for $R(SiO_4)^{4-}$ in a single Grs$_{50}$Prp$_{50}$ crystal; $R(SiO_4)^{4-}$ of SiO$_4$ surrounded by six CaO$_8$ (CaO$_8$ clustering around SiO$_4$) and that by six MgO$_8$ (MgO$_8$ clustering around SiO$_4$). Such clustering stabilized garnet of ca. Grs$_{50}$Prp$_{50}$ and could be controlled by two factors: (1) bulk chemistry near Ca:Mg = 1:1 and (2) UHP conditions. No exsolution lamella and no symplectite mean that Grs$_{50}$Prp$_{50}$ garnet was stable under low P and T once it formed at high P and T.

Reference
Ganguly, J., Cheng, W., Tirone, M., 1996, Contributions to Mineralogy and Petrology, 126, 137-151.
Ogasawara, Y., 2005, Elements, 1, 91-96.
Keywords: Grossular-Pyrope Garnet, Ultrahigh-pressure, diamond, Laser Raman spectroscopy, clustering, Kokchetav