Global seismic wave computation on the K computer

*Seiji Tsuboi¹, Kazuto Ando², Takayuki Miyoshi³, Daniel Peter⁴, Dimitri Komatitsch⁵, Jeroen Tromp⁶

1. JAMSTEC, Center for Earth Information Science and Technology, 2. RIKEN, RIST, 3. Univ. Tokyo, Earthquake Research Institute, 4. KAUST, 5. Aix-Marseille University, 6. Princeton University

We present high-performance simulations of global seismic wave propagation with an unprecedented accuracy of 1.2 seconds seismic period for a realistic three-dimensional Earth model by using the Spectral-Element Method on the K computer. Our seismic simulations use a total of 665.2 billion grid points and resolve

1.8 trillion degrees of freedom. To realize these large-scale computations, we optimize a widely used community software code to efficiently address all hardware parallelization, especially thread-level parallelization to solve the bottleneck of memory usage for coarse-grained parallelization. The new code exhibits excellent strong scaling for the time stepping loop, i.e. parallel efficiency on 82,134 nodes relative to 36,504 nodes is 99.54%. Sustained performance of these computations on the K computer is 1.24 petaflops, which is 11.84% of its peak performance. The obtained seismograms with an accuracy of 1.2 seconds for the entire globe should help us to better understand rupture mechanisms of devastating earthquakes.

Acknowledgements

This work used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID:hp130013). We used the open-source SPECFEM3D GLOBE version 5 software package freely available through the Computational Infrastructure for Geodynamics (CIG). Broadband seismograms were recorded by the Global Seismic Network and distributed by the IRIS Data Management Center.

Keywords: seismic wave ppropagation, spectral element method, K computer