Thu. Oct 27, 2022

Room-E

Environmental chemistry

[1E04-1E07] Environmental chemistry Chair:Masaru Ogura(The Univ. of Tokyo) 10:30 AM - 11:30 AM Room-E (12E Conf. room)

- [1E04] Mechanistic investigation of the lowtemperature NO_x reduction reaction under the application of an electric field Ochihiro Ukai¹, Ayaka Shigemoto¹, Takuma Higo¹, Yuki Narita¹, Toru Uenishi², Yasushi Sekine¹ (1. Waseda Univ., 2. Toyota Motor) 10:30 AM - 10:45 AM
- [1E05] Low-temperature CO oxidation observed at Nidecorated RuO₂ epitaxial layer ORisa Ichihashi¹, Akira Oda¹, Yuta Yamamoto¹, Kyoichi

Sawabe¹, Atsushi Satsuma¹ (1. Nagoya University) 10:45 AM - 11:00 AM

[1E06] Development of platinum-base metal composite catalyst for exhaust purification under oxygenrich conditions

> OKosuke Morijiri¹, Katsutoshi Sato¹, Hiroshi Yamada¹, Katsutoshi Nagaoka¹ (1. Nagoya University) 11:00 AM - 11:15 AM

[1E07] Gas diffusion and reaction in the catalyst pore
ORen Kato¹, Katsutoshi Sato¹, Katsutoshi Nagaoka¹,
Hiroshi Yamada¹, Yohei Kinoshita², Takahiro Hayashi²
(1. Nagoya University, 2. Toyota Motor Corp.)
11:15 AM - 11:30 AM

Environmental chemistry

[1E04-1E07] Environmental chemistry

Chair:Masaru Ogura(The Univ. of Tokyo)

Thu. Oct 27, 2022 10:30 AM - 11:30 AM Room-E (12E Conf. room)

[1E04] Mechanistic investigation of the low-temperature NO, reduction reaction under the application of an electric field OChihiro Ukai¹, Ayaka Shigemoto¹, Takuma Higo¹, Yuki Narita¹, Toru Uenishi², Yasushi Sekine¹ (1. Waseda Univ., 2. Toyota Motor) 10:30 AM - 10:45 AM [1E05] Low-temperature CO oxidation observed at Ni-decorated RuO₂ epitaxial layer ORisa Ichihashi¹, Akira Oda¹, Yuta Yamamoto¹, Kyoichi Sawabe¹, Atsushi Satsuma¹ (1. Nagoya University) 10:45 AM - 11:00 AM [1E06] Development of platinum-base metal composite catalyst for exhaust purification under oxygen-rich conditions OKosuke Morijiri¹, Katsutoshi Sato¹, Hiroshi Yamada¹, Katsutoshi Nagaoka¹ (1. Nagoya University) 11:00 AM - 11:15 AM [1E07] Gas diffusion and reaction in the catalyst pore ORen Kato¹, Katsutoshi Sato¹, Katsutoshi Nagaoka¹, Hiroshi Yamada¹, Yohei Kinoshita², Takahiro Hayashi² (1. Nagoya University, 2. Toyota Motor Corp.) 11:15 AM - 11:30 AM

電場印加時の低温 NO_x還元反応のメカニズム解明

(早稲田大学*・トヨタ自動車**) (早稲田大学*・トヨタ自動車**) (単稲田大学*・トヨタ自動車**) (単都) 千雪本 彩香*・ ひご たくま なりた ゆうき うたにし とおる サマト 比護 拓馬*・成田 優希*・植西 徹**・関根 泰*

1. 緒言

三元触媒(Three-Way Catalyst: TWC)は自動車の排出 ガスに含まれる有害成分 NO_x, HC, COを無害な成分に 転換する.現在普及しているモーター併用の自動車は コールドスタートを頻発し,排出ガスが低温化している¹⁾. しかし,低温では三元触媒は動作温度に到達せず,従 来の触媒反応システムでは浄化が不十分である.その ため,低温でも三元触媒が駆動する排出ガス浄化シス テムの開発が求められている.

また,当研究室では電場触媒プロセスの検討を進め ている.電場触媒プロセスとは,触媒層上下に挿入した 電極から直流電流を印加することで電場を形成し,従 来の触媒反応では実現しなかった低温反応を促進する 非在来型の触媒反応である.

そこで我々は、三元触媒反応に電場触媒プロセスを 適用することで低温での高活性・高選択性な NO_x 還元 反応を目指し、メカニズム解明を行った.

2. 実験

担体 Ce0.7Zr0.3O2 はクエン酸錯体重合法により調製し、 0.5wt%の Pd を蒸発乾固法により担持した. 触媒活性 評価は固定庄常圧流通式反応器を用いて行った. 触 媒量は 200, 80 mg とした. 全流量を 100 mL min⁻¹に設 定し,前処理として 773 K において 5%O2+Ar を 15 分 間供給した後,5%H2+Arを 15 分間供給した. 反応全 流量を200 mL min⁻¹に設定し, キャリアガスを Ar として 反応ガスを Table 1 に示す組成で供給した. 反応炉温 度を338-573 Kの範囲で段階的に昇温させ,各温度に おける出口ガスを GC-TCD, GC-FID, NO_x analyzer(化 学発光法)を用いて測定した. 電場中で触媒活性を評 価する場合には, 1.5, 3.0 mA の直流電流を印加し, 応 答電圧をオシロスコープで測定した. 次に, NO-C3H6 雰 囲気で分圧変化試験を行った. 触媒量を 80 mg とし, 電場印加時は 393 K, 非印加時は 490 K に設定した. C₃H₆を 500 ppm で一定とし, NO 濃度を 2100-300 ppm で変化させた. NO を 2500 ppm で一定とし, C₃H₆ は 100-500 ppm で変化させた. In-situ IR 測定では, 活性 試験と同様の前処理を行い, FT/IR-6200 を用いて 500 ppm C₃H₆ (Ar balance)→4500 ppm NO (Ar balance)交 互供給試験を行った. 触媒量は 160 mg, 反応全流量 は 100 mL min⁻¹とした. 電場印加時は 373 K, 非印加 時は448 K にセル温度を設定した.

Table 1	Gas comp	osition in	activity	tests.
	1		2	

		-			
パターン	NO	СО	C ₃ H ₆	O ₂	H ₂ O
	/ ppm	/ ppm	/ ppm	/ ppm	/ vol%
TWC 雰囲気	2500	3000	500	2500	7
NO-CO	2500	3000	-	250	7
NO-C ₃ H ₆	2500	-	500	1000	7

3. 結果および考察

TWC 雰囲気下の触媒活性試験の結果, 電場を印加 することで低温での NO 還元活性が発現した。また, 全 温度域で N₂ 選択率がほぼ 100%となり, CO, C₃H₆転化 率も向上した. このことから, 電場印加により低温での三 元触媒活性が向上したことが分かった. 次に電場 TWC 反応の主反応を特定するために, NO-CO-O₂-H₂O, NO-C₃H₆-O₂-H₂O 雰囲気に TWC 雰囲気を分割した. その 結果, NO 転化率と N₂ 選択率について, TWC 反応と NO-C₃H₆-O₂-H₂O 反応の挙動が類似した. したがって, TWC 反応の主反応は NO-C₃H₆反応であると分かった.

そこで、NO-C₃H₆ 反応における電場印加の効果を解 明するため、NO-C₃H₆ 雰囲気で電場印加時と非印加時 で分圧変化試験を行った.電場非印加時の NO 転化 速度は NO, C₃H₆ 分圧に負に依存した一方で、電場印 加時は正に依存した.よって、電場印加により NO と C₃H₆の表面反応が進行することが分かった.

NO-C₃H₆反応のメカニズムを解明するため, *in-situ* IR 測定において C₃H₆→NO 交互供給試験を行った. C₃H₆ 供給後, 電場印加時にのみ 1700–1880 cm⁻¹ に C=O と 2100 cm⁻¹に Pd⁰-CO のピークが観察された²⁾. ここで,反応雰囲気中に酸素源はなく,酸素源は触媒 担体のみであった. つまり, 電場印加により触媒担体の 表面格子酸素が活性化され, C₃H₆の部分酸化種 C_xH_yO₂が生成したと考えられる³⁾. さらに, NO 供給後, C=O と Pd⁰-CO のピークが消失した. ここで, Burch らは, 炭化水素の部分酸化種が NO_x 還元反応において重 要な中間体であることを明らかにしている⁴⁾. このことか ら, 生成した C_xH_yO₂が NO を還元したと考えられる.

Figure 1 Predicted reaction mechanism of $NO-C_3H_6$ reaction on $0.5wt\%Pd/Ce_{0.7}Zr_{0.3}O_2$.⁵⁾

1) J. Gao et al., Appl.	Thermal Eng	., 2019,	147 , 177.
-------------------------	-------------	----------	-------------------

2) M. Haneda et al., J. Catal., 2002, 206(1), 114.

3) K. Takise et al., Appl. Catal. A, Gen., 2019, 573, 56.

4) R. Burch et al., Appl. Catal. B Environ., 2002, 39, 283.

5) A. Shigemoto et al., Catal. Sci. Technol., 2022, 12, 4450.

Ni 担持 RuO₂エピタキシャル層上で観測される 低温 CO 酸化活性

(名古屋大*1) ○壱橋里紗*1・織田 晃*1・山本悠太*1, 沢邊恭一*1・薩摩 篤*1

1. 緒言

RuO₂ 表面は高い酸素親和性と酸化還元活性に由 来する触媒特性を示す. Rutile 型構造を有する担体 上で特異に生成する RuO₂ ヘテロエピタキシャル層 は,特に,CO酸化反応¹⁾や N₂O 分解反応²⁾に対して 優れた触媒性能を示し,近年注目されている.

金属酸化物への異種金属ドープは触媒性能をチューニングする代表的手法の一つである. これまで に RuO₂ ナノ粒子やバルク構造への 3d 金属ドープ により, OER 活性が劇的に向上するなど, 注目に値 するドープ効果が数多く報告されている.³ RuO₂ エ ピタキシャル層への 3d 金属ドープには, ナノ粒子 やバルクへの金属ドープとは異なるユニークな効 果が期待される. しかし, RuO₂ エピタキシャル層へ の異種金属ドープの効果は一切検討されてこなか った. 理由は 2 つある. 1) 複合酸化物エピタキシ ャル層の設計指針がなかった. 2) エピタキシャル 成長層の原子レベルの直接観察や構造解析が極め て困難であった.

本研究では、rutile-TiO₂ ~ Ru 硝酸塩と 3d 金属硝酸塩を共含浸し、大気焼成するだけで、RuMO_x 複合酸化物エピタキシャル層が自発的に形成する新現象を見出した. Ni ドープにより、Ru 触媒において既報で最も高い低温 CO 酸化活性が発現することを見出し、その要因となる構造因子を XAFS、HAADF-STEM 観察、XPS、及び H₂-TPR により究明した.

2. 実験

触媒調製. Rutile-TiO₂ に 5 wt%の Ru(NO₃)₂ と 0.5 wt% の M(NO₃)_x (M = Mn, Fe, Co, Ni, Cu) を共含浸し, 300°Cで 4 時間大気焼成を行い,種々の共担持触媒 を得た.以後, 5Ru+0.5M/r-TiO₂ と称する.比較触媒 として 5 wt%の Ru(NO₃)₂ あるいは 0.5 wt%の Ni(NO₃)₂ のみを担持した触媒も得た.以後, 5Ru/r-TiO₂及び 0.5Ni/r-TiO₂ と称する.

触媒活性評価. 触媒を反応ガス (0.5% CO, 20% O₂, Ar balance) に曝した. 出口ガスを CO/CO₂分析計に よって計測し, 定常状態での CO 転化率および CO 酸化速度を算出した. TOF は CO 酸化速度を全担持 金属仕込み量 (mol) で割りつけた値で定義した.

3. 実験及び考察

Fig. 1 に 5Ru+0.5M/r-TiO₂の 50℃における TOF を 示す. 3d 金属の共担持により TOF が飛躍的に向上 した.特に, 5Ru+0.5Ni/r-TiO₂ で最大 49.4 mol/mol_{metal}/h が観測された.一方, 0.5/r-TiO₂ はほと んど活性を示さなかった (< 1 mol/mol_{metal}/h). 従って, 5Ru+0.5Ni/r-TiO₂の高い活性は Ru と Ni の共 担持によって特異に発現する.

共担持効果の要因の理解を目的として, Ni K-edge

XAFS 測定を行った.得られたスペクトルの EXAFS 領域をウェーブレット変換し,解析した結果,Ni-(O)-Ru後方散乱が明瞭に観測された.これは,Niと Ruから成る複合酸化物が r-TiO₂上で形成したこと を意味する.

Fig. 2 に 5Ru/r-TiO₂ 及び 5Ru+0.5Ni/r-TiO₂ の HAADF-STEM 像を示す. どちらの触媒においても, r-TiO₂の (110) 格子縞に沿って輝点が数層並んでい る様子が確認された. これは RuO₂ エピタキシャル 層の形成を意味する (Fig. 2, 点線枠). この結果か ら, Ni ドープ後も RuO₂ エピタキシャル層が維持さ れていることが示された.

Ni 複合化が反応機構へ及ぼす影響を理解するた め,反応次数の解析,比較を行った.Ni ドープによ り,COの反応次数にほとんど変化はなかったが,O2 反応次数は+0.17から+0.50へ増加した.この結果は, 吸着酸素を利用した酸化反応機構の寄与が増加し たことを示唆している.アレニウスプロットから得 られた 5Ru+0.5Ni/r-TiO2の見かけの活性化エネルギ ーは 5Ru/r-TiO2に比べ,22 kJ/mol 低くなっていた. 本講演では,自発的に生じる複合化現象が触媒活性, 反応機構に及ぼす影響について詳細に議論する.

Fig. 1 5Ru+0.5M/r-TiO₂, 5Ru/r-TiO₂, 及び 0.5Ni/r-TiO₂ の 50°Cにおける TOF.

Fig. 2 (a) 5Ru/r-TiO₂ (b) 5Ru+0.5Ni/r-TiO₂ \mathcal{O} HAADF-STEM 像.

1) Li, H. et. al., ACS Catal., 8, 5526 (2018).

2) Lin, Q. et. al., J. Matter. Chem. A., 2, 5178 (2014).

3) Chen, S. et. al., ACS Catal., 10, 1152 (2020).

酸素過剰条件での排ガス浄化活性向上を目指した 白金-汎用金属複合触媒の開発

もりじり こうすけ きとう かつとし やまだ ひろし ながおか かつとし 名古屋大学 ○森尻 康介・佐藤 勝俊・山田 博史・永岡 勝俊

1. 緒言

三元触媒は自動車排ガスに含まれる有害成分 である窒素酸化物(NO_x),炭化水素(HC),一酸 化炭素(CO)を同時に浄化する触媒である. 今後 の自動車需要の推計では,ハイブリッド車の占め る割合が増加することが予測されているが, ハイブ リッド車は排ガスの温度が低く,また,燃費の向上 のために酸素過剰条件で運転されるため, NO_xの 還元にとっては不利な条件となってしまう. 現状で はこの問題に対応するために触媒に多量の貴金 属が使用されている.この様な背景から本研究で は、低温度域で高い排ガス浄化活性を示し、かつ 酸素過剰条件下で高い NO_x 還元性能をもつ, 貴 金属使用量を削減した自動車排ガス浄化触媒の 開発を目的とした.これまでに本研究室では少量 の貴金属と汎用金属の複合化に注目した検討を 行っており、PtとCoを複合化することで、同担持量 の Pt 触媒よりも高い触媒活性を示すことを見いだ している[1]. 本研究ではさらなる活性向上を目指し, Pt と複合化させる第二金属(汎用金属)の組み合 わせについて検討を行った.

2. 実験方法

活性成分の硝酸塩水溶液([Pt(NH₃)₄](NO₃)₂も しくは Fe, Ni, Zn, Cu, Coの硝酸塩, またはその両 方)に γ-Al₂O₃を懸濁させ, 撹拌した. その後, 減 圧により溶媒を蒸発,乾燥させ,450 °C で焼成す ることで目的の触媒を得た. 金属担持量は Pt が 0.1 wt%, 汎用金属が1 wt%とし, 一部汎用金属は 担持量の異なる組成の触媒を調製した. 活性測定 には固定床流通式反応装置を用いた.反応ガスと して自動車排ガスを模した, NO: 500 ppm, C₃H₆: 400 ppm, CO: 5000 ppm, O₂: 1900~6200 ppm を 含む He 混合ガス(総流量 200 cc/min)を流通させ た.酸素濃度の指標としてλ= ([NO]+2[O₂])/([CO]+9[C₃H₆])を用いた. $\lambda = 1$ (O₂: 4050 ppm)において、50 ℃ から 600 ℃ まで 10 °C/min で昇温する測定 (λ 一定条件)と, $\lambda = 1$ で 50°C から 400°C まで 10 °C/min で昇温したのち, 400°Cでλを0.5から1.5の範囲で変化させる測定 (λ変化条件)を行った.

3. 結果および考察

λ 一定条件における NO 転化率の測定結果を Fig. 1 に示す. Zn 以外の汎用金属と複合化させる ことで Pt モノメタルよりも高い NO 還元活性が発現 した.特に CuPt が他の複合触媒に比べて高い NO の還元活性を示した.これは Cu 自体のもつ優れた NO 還元特性が反映されたためと考えられる.

Fig. 2 に λ 変化条件($0.5 \leq \lambda \leq 1.5$)における NO 転化率の測定結果を示す.酸素過剰時($\lambda > 1$)に 注目すると,汎用金属によって NO 還元活性は大 きく異なり,特に CoPt が高い NO 転化活性を示す ことが分かった. CoPt 触媒において, Co と Pt は合 金構造を形成していることがわかっており^[1],この 合金構造が酸素過剰条件下での NO 還元に対し ても有用である可能性が示された.

当日の発表では、上記実験結果から有望だと考 えられる汎用金属の担持量を変化させ、その影響 について検討した結果についても報告する.

【参考文献】

触媒担体の細孔構造がガスの拡散と反応に与える影響

1.緒言

触媒内のガスの拡散現象を解明することで,触媒貴 金属を適切な位置に適切な量を担持することができ, 担持量の削減に繋がる.触媒担体にはメソ孔である一 次細孔とマクロ孔である二次細孔が存在する.一次細 孔内の拡散は反応する活性点までの拡散である.二次 細孔内の拡散は一次細孔入口までの拡散である.その ため,一次細孔と二次細孔の比率によって,ガスの拡 散量と反応量の関係が変化すると考えられる.本発表 では二次細孔の空隙率がガスの拡散と反応に与える影 響を検討した.

2.実験

Pd を担持したセリアジルコニア(Pd/CZ)粉末をディス ク状に圧力成形し、一次細孔のみのサンプルを作成し た. 反応が生じないサンプルとして CZ 粉末のみを圧力 成形したサンプルも作成した.また加熱すると熱分解を 起こす細孔形成剤を一定量混ぜ合わせることで,一次 細孔と二次細孔を両方含むサンプルを作成した. 細孔 形成剤の量のみを変化させることで,各サンプルの触 媒量を固定し、二次細孔空隙率を変化させた. 作成し たサンプルを Fig. 1 のように Wicke-Kallenbach 型セル 内に接着剤を用いて固定した.実験ではサンプルによ って区切られた二つの部屋にそれぞれ目的成分ガスで ある CO とスイープガス O2を供給した. 温度は 200 °C と し、COの酸化反応を検討した.サンプルの部屋1と部 屋 2 における CO と CO₂ の濃度を測定した. 部屋 2 の 濃度と出口流量とサンプル面積から透過量[mol/s・m2] を算出し、二次細孔空隙率と比較した.

Fig. 1. Wicke-Kallenbach 型セル.

3.実験結果および考察

二次細孔空隙率 0%,13%,29%,37%に対する透過量 のグラフを Fig. 2 に示す. Fig. 2 には CZ サンプルにお ける CO の透過量と、 Pd/CZ サンプルにおける CO+CO₂ の透過量を示している. CZ サンプルと Pd/CZ サンプル の両方の場合において、二次細孔が形成されたときに、 ガスの透過量は増加した. これはガスのサンプル内の 拡散性が向上したためだと考えられる. また. CZ サンプ ルと Pd/CZ サンプルでは透過量に大きな差はみられな かった.

同様に二次細孔空隙率に対する反応率のグラフをFig. 3 に示す. Fig. 3 には透過した CO, CO₂から算出され る反応率として CO₂/(CO+CO₂)の値を載せている. Fig. 3より,反応率は二次細孔空隙率が0%における値が一 番大きくなった.これは一次細孔量比率が大きくなった ことにより、一次細孔近傍を透過するガス量が増えたた め,反応量が増えたと考えられる.二次細孔空隙率 13%,29%の場合は、0%の場合と比べて反応率は低下 した.これは二次細孔が生じることで、ガスが二次細孔 内を積極的に透過し,反応の活性点に至るガス量が少 なくなるからだと考えられる. 二次細孔空隙率 13%.29% では反応率に大きな変化はなかったが、37%の場合は 反応率が増加した.そのため空隙率 29%と37%の間で は、拡散量と反応量の変化点がある可能性がある. そこ で COMSOL Multiphysics を使用し, モデル化と解析を 進めていこうと考えている.

Fig. 3. 二次細孔空隙率と反応率.