Thu. Oct 27, 2022

Room-E

Functional materials [1E08-1E11] Functional materials (1) Chair:Ryota Osuga(Tohoku Univ.) 1:00 PM - 2:00 PM Room-E (12E Conf. room)

[1E08] Theoretical chemical investigation of the proton adsorption properties of Keggin-type polyacids and their governing factors OHiromu Akiyama¹, Hiroshi Sampei¹, Masahiro Yamaguchi¹, Chinami Takashima¹, Hiromi Nakai¹, Shuhei Ogo², Tadaharu Ueda², Yasushi Sekine¹ (1. Waseda Univ., 2. Kochi Univ.) 1:00 PM - 1:15 PM [1E09] Investigation on degradation mechanism of amine on SiO₂ support during CO₂ adsorptiondesorption process. OKodai Tanaka¹, Hajime Hojyo¹, Hisahiro Einaga¹ (1. Kyushu university) 1:15 PM - 1:30 PM [1E10] Formation of spherical zirconia particles via thermal treatment of zirconium alkoxides in 1,4-butanediol ○Shinji Iwamoto¹, Hitomi Igarashi¹, Tetsuya Kojima¹, Fuya Sugiyama¹ (1. Gunma University) 1:30 PM - 1:45 PM

[1E11] Synthesis of MFI zeolite-encapsulated metal NPs by dry gel conversion method and its application for catalytic reactions OMisaki Endoh¹, Nodoka Nakatani¹, Ye Jianan, Kentaro Kimura¹, Hiroyasu Fujitsuka², Teruoki Tago¹ (1. Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2. Department of Chemical Engineering, Kyoto University) 1:45 PM - 2:00 PM

Functional materials

[1a0512-16] Functional materials (2) Chair:Satoshi Inagaki(Yokohama National Univ.) 2:15 PM - 3:30 PM Room-E (12E Conf. room)

[1E12] Direct synthesis of Ru-containing MFI zeolite and its catalytic activity for methane oxidative conversion OMuyuan Yu¹, Shuhei Yasuda², Toshiki Kaseguma¹,

Takeshi Matsumoto², Junko N Kondo², Toshiyuki Yokoi²

(1. School of Materials and Chemical Technology, Tokyo Institute of Technology, 2. Institute of Innovative Research, Tokyo Institute of Technology)2:15 PM - 2:30 PM

[1E13] Synthesis of Cr-containing MFI zeolite and its catalytic activity

○Toshiki Kaseguma¹, Shuhei Yasuda¹, Muyuan Yu¹,
Junko N. Kondo¹, Toshiyuki Yokoi¹ (1. Institute of
Innovative Research, Tokyo Institute of Technology)
2:30 PM - 2:45 PM

[1E14] Synthesis of zeolites with Al pair sites and evaluation of ion-exchange properties for Sr²⁺ cations

> ○Yoshiyasu Imanishi¹, Mizuho Yabushita¹, Ryota Osuga¹, Sachiko Maki¹, Kiyoshi Kanie¹, Toshiyuki Yokoi², Atsushi Muramatsu¹ (1. Tohoku university, 2. Tokyo Institute of Technology) 2:45 PM - 3:00 PM

[1E15] Impact of acid treatment on titanosilicate with different preparation methods and its catalytic properties

> OShunsuke Yamada¹, Shuhei Yasuda¹, Takeshi Matsumoto¹, Junko N Kondo¹, Yoshihiro Kon², Toshiyuki Yokoi¹ (1. Tokyo Institute of Technology, 2. National Institute of Advanced Industrial Science and Technology(AIST)) 3:00 PM - 3:15 PM

[1E16] Investigation on the surfactant effect on the syntheses and properties of various 8-membered ring zeolites

> OMasafumi Kamidate¹, Yuuta Iga¹, Masato Sawada¹, Takeshi Matsumoto¹, Shuhei Yasuda¹, Junko N. Kondo¹, Toshiyuki Yokoi¹ (1. Tokyo Institute of Technology) 3:15 PM - 3:30 PM

Functional materials

[1E08-1E11] Functional materials (1)

Chair:Ryota Osuga(Tohoku Univ.) Thu. Oct 27, 2022 1:00 PM - 2:00 PM Room-E (12E Conf. room)

[1E08] Theoretical chemical investigation of the proton adsorption properties of Keggin-type polyacids and their governing factors OHiromu Akiyama¹, Hiroshi Sampei¹, Masahiro Yamaguchi¹, Chinami Takashima¹, Hiromi Nakai¹, Shuhei Ogo², Tadaharu Ueda², Yasushi Sekine¹ (1. Waseda Univ., 2. Kochi Univ.) 1:00 PM - 1:15 PM [1E09] Investigation on degradation mechanism of amine on SiO₂ support during CO₂ adsorption-desorption process. OKodai Tanaka¹, Hajime Hojyo¹, Hisahiro Einaga¹ (1. Kyushu university) 1:15 PM - 1:30 PM [1E10] Formation of spherical zirconia particles via thermal treatment of zirconium alkoxides in 1,4-butanediol OShinji Iwamoto¹, Hitomi Igarashi¹, Tetsuya Kojima¹, Fuya Sugiyama¹ (1. Gunma University) 1:30 PM - 1:45 PM [1E11] Synthesis of MFI zeolite-encapsulated metal NPs by dry gel conversion method and its application for catalytic reactions OMisaki Endoh¹, Nodoka Nakatani¹, Ye Jianan, Kentaro Kimura¹, Hiroyasu Fujitsuka², Teruoki Tago¹ (1. Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2. Department of Chemical Engineering, Kyoto University) 1:45 PM - 2:00 PM

ケギン型ポリオキソメタレートへの

プロトン吸着における支配因子の理論化学的検討

(早稲田大学*・高知大学**)○秋山 広夢*・ご瓶 大志*・山口 正浩・ たかしま ちなみ* なかい ひろみ* おごう しゅうへい**・うえだ ただはる**・ 関根 泰* 高島 千波*・中井 浩巳*・小河 脩平**・上田 忠治**・ 関根 泰*

1. 緒言

ポリオキソメタレート(POM)は、アニオン性の無 機酸化物クラスター種であり,その構造と組成の変 化により化学的性質を容易に制御できることが知ら れている. POM の中で、ケギン型構造の POM が最 も詳細に研究されている。それは、1 個のヘテロ原 子 X, 12 個のアデンダ金属 M, 40 個の酸素 O から 構成され, [XM12O40]²⁻(XM12)と表される. ケギン型 POMは、その組成を制御するだけで、多電子酸化還 元特性および酸性度を容易に制御でき、低級アルカ ンの酸化反応やクラッキング反応などで幅広く用い られている¹⁾. また, 液相反応におけるケギン型 POM の酸化還元特性は、溶媒中のカチオンの種類(特に プロトン)や量により変化することが知られている ²⁾. そのため、ケギン型 POM へのプロトンの吸着特 性は、様々な分野における基礎研究から応用研究に わたって、ミクロな現象の理解のために重要である. そこで本研究ではケギン型 POM の構造異性体のう ち,最安定なα-体及び,次に安定でα-体よりも高 い反応性を持つβ-体のプロトン吸着特性とその支配 因子を検討した.

2. 実験

本研究では Gaussian09 を用いて DFT 計算を行っ た.交換相関汎関数は M06,基底関数は Lanl2dz を 用い,溶媒としてのアセトニトリルの表現は ε=36.64 とした PCM 法で行った.構造最適化と共に振動数 計算を行い,すべての検討構造がエネルギー極小点 であることを確認するとともにエントロピーとギブ ズ自由エネルギーを算出した.また,プロトンの吸 着は α,β-体のケギン型 POM の対称性を考慮して非 等価な酸素上のみを検討した.プロトン吸着エネル ギーは以下のように算出した.

E(H_{ad}) = E(H[XM₁₂O₄₀]^(z-1)-E([XM₁₂O₄₀]^{z-}) (1) このとき, E(H_{ad}), E(H[XM₁₂O₄₀]^(z-1), E([XM₁₂O₄₀]^{z-})は それぞれプロトン吸着エネルギー,プロトン吸着後 の系のエネルギー,プロトン吸着前の系のエネルギ ーである.

3. 結果及び考察

まず,最安定なプロトン吸着位置の支配因子を検 討した.結果から, α -体では組成によらず単一の吸 着位置が安定であったが, β -体では組成により α -体 の時の吸着位置から変化することがわかった.しか し、これらの吸着位置の変化はアデンダ金属の種類 や価数により整理可能であった.

次に、式(1)により算出したプロトン吸着エネルギーの大小を支配する因子を検討した.ケギン型 POM と電子の親和性は、四面体構造中の O-M 結合の結合 次数sと価数zにより説明できると知られている³⁾. そこで、ケギン型 POM とプロトンの親和性を同様 に結合次数s、価数zにより整理することを志向し、 α-体におけるこれらの値を用いて、α-体及び β-体へのプロトン吸着エネルギーの回帰を行った(Fig. 1). このとき、結合次数は経験式により結合距離から算 出した値を用いた⁴⁾. 結果からこれらのプロトン吸 着エネルギーは α-体における s と z により支配され ることがわかった. このパラメータは取得が比較的 容易であるにもかかわらず、α-体だけではなく、β-体 の吸着エネルギーでさえもα-体のパラメータから高 精度に予測が可能であった.

以上よりケギン型 POM のプロトン吸着特性は, アデンダ金属の種類や価数,α-体での結合距離など, 測定可能なパラメータにより,予測できることがわ かった.

Fig. 1 α, β-XM12 プロトン吸着エネルギーの回帰結果

Reference

1) S. S. Wang and G. Y. Yang, *Chem. Rev.*, **115**, 4893 (2015)

2) S. Himeno et al., J. Electroanal. Chem., 485, 49 (2000).

3) K. Nakajima et al., Inorg. Chem., 49, 5212 (2010).

4) I. D. Brown and D. Altermatt, *Acta Cryst.*, **B41**, 244 (1985).

CO₂吸脱着過程における SiO₂担体上の

アミン酸化劣化機構の解明

(九州大) 〇田中 滉大・北條 元・永長 久寛

1. 緒言

温室効果ガス削減に向けた排ガス中の CO₂分 離回収法として、排ガスから CO₂を直接回収 する技術(Direct Air Capture: DAC)が注目 されている。本研究は、CO₂吸収能があるアミ ンを多孔質材料に固定した固体吸収剤に着目 した。固体吸収剤を利用したプロセスは従来 の化学吸収液法と比べ、低エネルギーでアミ ン再生が可能であり、省エネ・低コスト化が 見込まれる。一方で、酸素などの不純物が原 因となるアミン劣化が生じ、CO₂吸着量の低下 が報告されている。¹⁾そこで本研究では赤外 分光法や熱重量分析法を用いて、より化学的 安定性の高い新規のアミン開発を目指し、ア ミン酸化劣化機構の解明を行った。

2. 実験

<u>試料調製</u>多孔質担体として SiO₂、アミンは (CH₃0)₃SiC₃H₆NHC₂H₄NH₂を用いた。

SiO₂:アミン:水=1:0.7:0.35の重量比で秤 量し、含侵法によりアミノシラン修飾吸着剤を 調製した。また空気流通下でTG-DTA を行い、 吸着剤の熱安定性を評価した。

<u>FTIR 測定</u>吸着剤を 20 φのディスクに成形、 日本分光 FTIR により FTIR 測定(透過法)を行 った。ガスの流速はすべて 15 mL/min とした。

3. 結果と考察

25 °Cにおける CO₂吸着等温線より、調製し た吸着剤が CO₂吸着能を示すことを確認した。 図 1 に CO₂流通下 25 °Cにおける同試料の *in situ* FTIR スペクトルを示す。吸着剤に CO₂を 接触させると、NH₂種に帰属される FTIR バンド ($v = 1600 \text{ cm}^{-1}$)が消失し、COO⁻種に帰属され るバンド ($v = 1580 \text{ cm}^{-1}$)が観測されており、 アミン基への CO₂吸着が確認された。また、TG-DTA より、空気中 200 °C付近で SiO₂上のアミ ノシランが酸化分解すること、さらに、CO₂/H $_2$ O/Air 流通下で 60-150 °Cに加熱しても、ア ミノシランが分解しないことが *in situ* FTIR 測定より明らかとなった。

図 2 に Air/CO₂/H₂O 流通下、吸着剤を 80 °C 下に加熱した際の *in situ* FTIR スペクトルを 示す。処理時間が数日間経つと、C=0 または C=N 種に帰属されるバンド ($v = 1670 \text{ cm}^{-1}$)が 出現し、時間とともに強度が増大しており、吸 着剤の経時的な酸化劣化が観測された。

純酸素流通下で同様に in situ FTIR 測定を 行ったところ、上記と同様なスペクトル変化が 見られた。さらに水蒸気を共存させると、前述 の二つの条件と比べ、C=0/C=N 種のバンド強度 の生成速度が増加した。以上の結果より、吸着 剤は酸素により酸化され、水蒸気により酸化劣 化が促進されることが示された。

A. Heydari-Gorge., Y. Belmabkhout.,
A. Syari., Microporous and Mesoporous
Materials. 2011, 145, p. 146-149

ジルコニウムアルコキシドの1,4-ブタンジオール中での 加熱処理による球状ジルコニア粒子の生成

(群馬大理工) 〇岩本伸司・五十嵐 瞳 ・小島徹也・杉山歩哉

1. 緒言

ジルコニウムテトラ-*n*-プロポキシド(ZNP)を1,4-ブタンジオール(1,4-BG)中,300 ℃で2h加熱す ることで,ナノ結晶が凝集したメソ孔をもつ真球状 の粒子を得られることが見出されている^{1,2)}。本研究 では様々な条件で得られた生成物の物性測定を行い, 球状粒子の生成過程の解明を試みた。

2. 実験

ZNP を 1,4-BG に加え,オートクレーブ中, 2.5 °C/min で所定温度 (250–300 °C) まで昇温し,そ の後,その温度で 0–2 h 保持した。放冷後に得られ た生成物をアセトンで洗浄,風乾したのち,種々の 物性測定を行った。

3. 結果と考察

図1には生成物の XRD 測定結果および SEM 像を 示す。250 ℃ で 2 h 加熱して得られた生成物では低 角度域にシャープなピークがみられたが、ZrO2結晶 のピークはみられなかった。これに対し、270 ℃で 2h, 300 ℃ で 0h または 2h 加熱して得られた試料 ではいずれも正方晶系ジルコニアのピークがみられ た。一方, SEM 観察では, 300 ℃ で 2 h 加熱した試 料では球状粒子がみられたが、270 ℃ で 2 h あるい は 300 °C で 0 h 加熱した試料では、大部分が不定形 であった。これらの結果から、ジルコニアの結晶化 は 250~270 ℃ でおこり, その後 300 ℃ での加熱に より徐々に球状粒子が形成されることが示唆された。 図2にはこれらの試料のTG測定結果を示す。いず れの試料でも有機物の分解・燃焼によると考えられ る重量減少が確認されたが,これらの重量減少量は, 加熱温度が高く、また加熱保持時間が長いほど小さ くなった。IR 測定では, 270 °C で 2 h, あるいは 300 °C で0h保持して得られた生成物ではCH種およびOH のピークがみられたが、300 °C で 2 h 加熱後の試料 ではこれらのピークが小さくなった。これはジルコ ニアの結晶化がおこった初期の段階では ZNP や 1,4-BG 由来の C₃, C₄の化学種が ZrO₂表面に結合し ていたが、このうち 1.4-BG 由来の化学種が 300 ℃ での加熱により脱離したためと考えられる。加熱後, 得られた生成物の液体中の成分を調べたところ, 300 ℃ で 0 h 加熱後の試料では 1,4-BG が残存してい

たが、300 ℃ で 2 h 加熱後では 1,4-BG はほとんどみ られず、かわりに THF と水が生成した。また、プロ パノール、3-ブテン-1-オール、さらに C₇炭化水素が 認められた。C₇炭化水素は 300 ℃ での保持時間が長 くなると生成量が増大し、液相中では疎水性-親水性 の液-液界面が形成されると考えられる。一方、 300 ℃ での保持時間が長くなると ZrO₂ ナノ結晶の 1,4-BG 由来の表面化学種が減少し、表面特性は次第 に疎水性に変化すると考えられる。このような表面 が疎水性のナノ結晶が疎水性の液相中で凝集するこ とで多孔性の球状粒子が形成されると考えられる。

1) S. Kongwudthiti, P. Praserthdam, P. Silverston, M. Inoue, *Ceram. Intern.*, **29**, 807 (2003).

2) F. Sugiyama, S. Iwamoto, J. Ceram. Soc. Jpn., **128**, 410 (2020).

固相転換法による MFI ゼオライト内包金属微粒子触媒の 開発と触媒反応への応用

(東工大*・京大**)〇遠藤海咲*・中谷のどか*・叶家楠・木村健太郎*・藤墳大裕** ・多湖輝興*

1. 緒言

金属微粒子担持ゼオライト触媒は、金属触媒能に 加えてゼオライト由来の固体酸触媒能と分子ふるい 能を有するため、様々な触媒反応に用いられている。 一方、従来の含浸法で調製した金属担持ゼオライト 触媒は、金属微粒子が主にゼオライト結晶外表面近 傍に固定化されるため、金属成分に対する分子ふる い能が十分に機能しない。さらに、金属微粒子は熱 によりシンタリングしやすく、活性が低下する。こ れらの問題点を解決する方法として、当研究室では 金属微粒子をゼオライト粒子内に固定化したゼオラ イト内包金属微粒子触媒に着目している。同触媒は、 内包構造による分子ふるい能の賦与、および金属微 粒子の耐熱安定性の向上が期待される [1,2]。これま でに、油中水滴型エマルションを利用した内包構造 触媒の調製を報告してきたが、より簡便で汎用性が 高い調製法として、本研究では固相転換法によるゼ オライト内包金属微粒子触媒の調製を実施した。同 法より調製した MFI ゼオライト内包 Pt 微粒子触媒 について、内包 Pt 微粒子に対する分子ふるい能と耐 熱安定性を報告する。

2. 実験

固相転換法による、MFI ゼオライト内包 Pt 微粒子 触媒(Pt@MFI)の調製では、まず、市販 MFI (HSZ-840NHA) に Pt 溶液を含浸担持した Pt/MFI を作製し た。次いで、Pt/MFIを3-アミノプロピルトリメトキ シシラン(APTMS)水溶液に添加し、2.5h 攪拌した。 同溶液にケイ酸溶液 (Si 源) とアルミン酸ナトリウ ム溶液 (Al 源) を滴下・混合し、APTMS を修飾した Pt/MFIの表面にアモルファス SiO₂-Al₂O₃層を形成さ せた (Pt/MFI@SiO₂-Al₂O₃)。滴下した溶液中の Si/Al 比は、ゼオライトの Si/Al 比と同じである。 得られた Pt/MFI@SiO₂-Al₂O₃を回収・乾燥させた後、粉末状の Pt/MFI@SiO₂-Al₂O₃に構造規定剤(テトラプロピルア ンモニウムヒドロキシ TPAOH)水溶液と NaOH から なる混合溶液を含浸させ、乾燥処理によりドライゲ ルを得た。その後、オートクレーブを用いてドライ ゲルのゼオライト転換 (453 K, 12 h) を行い、洗浄、 焼成により Pt@MFI を得た。得られた試料の結晶性 は粉末 X 線回折法 (XRD) と窒素吸着法により評価 し、MFI ゼオライトの形態観察と Pt 粒子径測定は、 走査型電子顕微鏡 (FE-SEM) と透過型電子顕微鏡 (TEM) により実施した。Pt 微粒子の固定化場所の評 価は、分子サイズの異なる芳香族 (1,3,5-トリメチル ベンゼン TMB、トルエン TOL) の水素化反応により 実施した。

3. 実験結果および考察

Fig.1に、基材 MFI、Pt 担持 (Pt/MFI)、アモルフ アス層形成 (Pt/MFI@SiO₂-Al₂O₃) およびゼオライ ト転換 (Pt@MFI) の各段階における窒素吸脱着等 温線、BET 比表面積とミクロ孔容積を示す。アモル ファス SiO₂-Al₂O₃層の形成により窒素吸着量と比表 面積が大きく減少したことから、一部の細孔の閉塞 が示唆された。固相転換処理により窒素吸着量と比 表面積が向上したことから、同アモルファス層が MFI ゼオライトへ転換されたと考えられる。TEMの 観察結果より (Fig.2) 、熱処理 (600°C, 2h) 後の Pt@MFIのPt平均粒子径は約5 nm であるのに対し、 同様の処理を行った Pt/MFI 上の Pt 平均粒子径 は 約 9 nm であることがわかった。この結果より、 Pt@MFI の内包構造が Pt の熱凝集を物理的に抑制し ていることが示唆された。

Pt 微粒子の固定化場所を検証するため、分子サイ ズの異なる芳香族の水素化反応を実施した。水素化 反応の結果を Table 1 に示す。分子サイズが MFI 細 孔径より小さい TOL の水素化反応では、Pt/MFI と Pt@MFI は同程度の水素化活性を示した。一方、分 子サイズが細孔径より大きい TMB の水素化反応で は、Pt/MFI と比較し、Pt@MFI の水素化活性は著し く低い。これは、TMB が MFI の細孔径より大きく 金属へのアクセスが困難であったことに起因し、 Pt@MFI の Pt 微粒子がゼオライト粒子内へ固定化 されていることを示す。以上より、含浸法と固相転 換法を組み合わせた簡便な方法により、耐シンタリ ング性と分子ふるい能に優れたゼオライト内包金属 微粒子内包触媒の調製に成功した。

Kobayashi, T., et al., Chem. Eng. J., 377, 120203 (2019).
Fujitsuka H., et al., Catal. Today, 375, 360 (2021).

Functional materials

[1a0512-16] Functional materials (2)

Chair:Satoshi Inagaki(Yokohama National Univ.) Thu. Oct 27, 2022 2:15 PM - 3:30 PM Room-E (12E Conf. room)

[1E12]	Direct synthesis of Ru-containing MFI zeolite and its catalytic activity for methane oxidative conversion
	OMuyuan Yu ¹ , Shuhei Yasuda ² , Toshiki Kaseguma ¹ , Takeshi Matsumoto ² , Junko N Kondo ² , Toshiyuki Yokoi ² (1. School of Materials and Chemical Technology, Tokyo Institute of Technology, 2. Institute of Innovative Research, Tokyo Institute of Technology) 2:15 PM - 2:30 PM
[1E13]	Synthesis of Cr-containing MFI zeolite and its catalytic activity OToshiki Kaseguma ¹ , Shuhei Yasuda ¹ , Muyuan Yu ¹ , Junko N. Kondo ¹ , Toshiyuki Yokoi ¹ (1. Institute of Innovative Research, Tokyo Institute of Technology) 2:30 PM - 2:45 PM
[1E14]	Synthesis of zeolites with Al pair sites and evaluation of ion-exchange properties for Sr ²⁺ cations
	OYoshiyasu Imanishi ¹ , Mizuho Yabushita ¹ , Ryota Osuga ¹ , Sachiko Maki ¹ , Kiyoshi Kanie ¹ , Toshiyuki Yokoi ² , Atsushi Muramatsu ¹ (1. Tohoku university, 2. Tokyo Institute of Technology) 2:45 PM - 3:00 PM
[1E15]	Impact of acid treatment on titanosilicate with different preparation methods and its catalytic properties
	OShunsuke Yamada ¹ , Shuhei Yasuda ¹ , Takeshi Matsumoto ¹ , Junko N Kondo ¹ , Yoshihiro Kon ² , Toshiyuki Yokoi ¹ (1. Tokyo Institute of Technology, 2. National Institute of Advanced Industrial Science and Technology(AIST)) 3:00 PM - 3:15 PM
[1E16]	Investigation on the surfactant effect on the syntheses and properties of various 8-membered ring zeolites OMasafumi Kamidate ¹ , Yuuta Iga ¹ , Masato Sawada ¹ , Takeshi Matsumoto ¹ , Shuhei Yasuda ¹ , Junko N. Kondo ¹ , Toshiyuki Yokoi ¹ (1. Tokyo Institute of Technology) 3:15 PM - 3:30 PM

Ru 含有ゼオライトの直接合成および酸化的メタン転換活性

(東京工業大) 〇子 牧遠・保田 修平・伜熊 俊紀・松本 剛・野村 淳子・横井 俊之

1. 緒言

貴金属ナノ粒子触媒は、バルク金属触媒と比較し て、高い比表面積、豊富な触媒活性点、およびユニ ークな電子構造を有しており、高性能な触媒材料と して期待されている.しかし、それらは熱力学的に 不安定であり、高温反応条件下でのシンタリングに より触媒活性点が大幅に減少し、触媒性能が低下す る等の課題が存在する.そこで、化学的安定性と構 造設計の自由度に優れた有望な触媒材料であるゼオ ライト等の多孔性材料の細孔構造をカプセルとして 活用し,金属ナノ粒子を内包させる研究が注目され ている.

本研究では、ゼオライト合成機構に着目し、金属 塩とキレート添加剤から成る金属種のゼオライト合 成ゲルへの導入効果、および触媒調製過程における 焼成条件効果が、金属種の微粒子化およびシンタリ ング耐性に及ぼす影響について検討した.さらに、 モデル反応としてメタン部分酸化反応を行い、調製 した各試料の酸化的メタン転換活性能についても検 討した.

2. 実験

MFI型ゼオライトである ZSM-5 (Si/Al=30) に対 し、導入金属量が 1wt%になる様にヘキサアンミン ルテニウム(III)クロリドを用い、含浸担持または直 接合成法により前駆体を調製した. 乾燥に続く空気 または Ar 雰囲気下での焼成を経て、種々の金属含 有ゼオライト触媒を調製した (Ru_ZSM-5_as-made, Ru_ZSM-5_Ar-cal, Ru_ZSM-5_air-cal). さらに、前述 の直接合成法と同様の手順を用いて、キレート添加 剤としてエチレンジアミン(EDA)を添加した合成ゲ ルを用いた触媒 (Ru_ZSM-5_EDA_as-made, Ru_ZSM-5_EDA_Ar-cal, Ru_ZSM-5_EDA_air-cal) を 調製した. 触媒のキャラクタリゼーションは、XRD, XRF, TG-DTA, CHN 分析, SEM, STEM, 元素マッピ ング法を用いて行った.

メタン転換反応は、常圧固定床流通式反応装置を 用いて行った. 触媒(20 mg)を反応管に詰め、アルゴ ン流通下 600 ℃で1時間前処理を行った後、反応温 度 600 ℃にて CH4, O₂, Ar 混合ガス (CH4 0.06, O₂ 0.03, Ar 0.91 atm)を 25 ml min⁻¹で供給し、反応を行った. 生成ガスは GC-FID および GC-TCD により分析した.

結果と考察

全ての触媒において、単相での MFI 型構造の形成 を示す粉末 X 線回折パターンが得られ、調製手法の 違いが骨格構造の形成・維持に影響を及ぼさないこ とを確認した.また、焼成後の試料において Ru 種 に由来する回折線が観察され、バルク Ru 種の形成 が示唆された.

調製した各触媒を用いてメタン部分酸化反応を行った(Fig. 1). 含浸担持により調製した Ru/ZSM-5 は 84 %程度の高いメタン転化率を示し,直接合成に より調製した試料(Ru_ZSM-5_as-made, Ru_ZSM-5_Ar-cal, Ru_ZSM-5_air-cal)を上回った. EDA キレート添加剤を用いて調製した触媒の as-made体(Ru_ZSM-5_EDA_as-made)をそのまま反応に用いたところ,88 %程度の高いメタン転化率を 示し, Ru/ZSM-5のそれ(84%)を上回る高いCOお よび H₂ 収率を示した.一方,焼成後の試料

(Ru_ZSM-5_EDA_Ar-cal, Ru_ZSM-5_EDA_air-cal) はいずれも非常に低いメタン転化率(10%, 18%)を 示し,焼成条件の違いに関わらず著しい触媒性能の 劣化が見られた. Ru_ZSM-5_as-made(81%)および Ru_ZSM-5_Ar-cal(68%), Ru_ZSM-5_air-cal(68%) のメタン転化率の比較でも同様の傾向が見られ, as-made 体をそのまま反応に用いることによる触媒 性能の向上が確認された.また,いずれの試料にお いても H₂/CO が量論比の 2 を上回ったことから,水 蒸気改質もしくは水性ガスシフト反応の進行が示唆 された.

Fig. 1 Catalytic conversion of CH₄ over (a) Ru/ZSM-5, (b) Ru_ZSM-5_as-made, (c) Ru_ZSM-5_Ar-cal, (d) Ru_ZSM-5_air-cal, (e) Ru_ZSM-5_EDA_as-made, (f) Ru_ZSM-5_EDA_Ar-cal, and (g) Ru_ZSM-5_EDA_air-cal catalysts.

 M. Choi, et al., J. Am. Chem. Soc., 26, 132, 9129-9137 (2010).

2) L. Liu, et al., Nat. Mater., 18, 866-873 (2019).

ゼオライト上に導入した Cr 種の状態とその触媒特性評価

(東工大*)〇忰熊 俊紀*・保田 修平*・于 牧遠*・野村 淳子*・横井 俊之*

1. 緒言

プロピレンは付加価値製品へと加工できる最も 重要な基礎化学製品の1つである.近年は,安価に 手に入るプロパンを多く含むシュールガスからプ ロピレンに変換するプロパン脱水素(PDH)反応が非 常に注目されている.これまでに様々な触媒材料・ 触媒反応条件の探索が盛んに検討されている¹⁾.数 ある触媒材料の中でも,化学的安定性と構造設計性 の自由度に優れたゼオライト材料は有望な候補の 一つであり,将来の PDH 反応の大規模な実用化へ の大きな可能性があると期待されている.

アルミノシリケート型ゼオライトは、細孔内にイ オン交換サイトを有し、そこへ金属カチオンを配位 させることにより、金属イオンまたは金属粒子の触 媒特性を制御・変調することが可能である.当研究 室ではこれまでに、ゼオライトに遷移金属を含浸担 持することにより、金属を超微粒子として導入し得 ることを見出し、さらに CH4酸化反応に対する金属 粒子サイズ効果を明らかにしている^{2,3)}.しかし、 金属の原子価に与える影響についてはいまだに明 らかになっておらず、不安定な原子価を安定化させ ることができれば、新たな触媒開発の設計に寄与で きると期待する.そこで、本研究ではゼオライトベ ースで Cr 原子価を制御する手法を見出し、それら のプロパン脱水素反応に対する C-H 結合活性につ いて検討した.

2. 実験

MFI型ゼオライト (Silicalite-1, ZSM-5 (Si/Al=30, 50, 100)) は, Tetrapropylammonium hydroxide (TPAOH)を有機構造規定剤として含む合成ゲルを 水熱合成することにより調製した.種々のゼオライトを, Cr(NO₃)₃の水溶液中に含浸し,乾燥と焼成を 経て,金属含有ゼオライト触媒を得た.また、 Silicalite-1をCr₂(SO₄)₃, CrCl₃, Cr(acac)₃, Cr(OAc)₃の 水溶液中に乾燥と焼成を経て,金属含有ゼオライト 触媒を得た.(Cr/Silicalite-1, Cr 担持量:0.1–30wt%).

PDH 反応活性評価は、固定床流通式反応装置を用 いて実施した. 触媒 100 mg を, Ar+H₂流通下 550 °C で前処理し, 550 °C で反応ガス(C₃H₈/N₂ = 1.0/4.0mL min⁻¹)を流通させて反応を行った.反応後のガスは, オンライン GC-TCD と GC-FID を用いて分析した.

実験結果および考察

すべてのゼオライト試料の粉末 X 線回折測定に おいて, MFI 型構造に特徴的な回折パターンが確認 され, Cr 種の含浸導入後も骨格構造を維持している ことが確認された. UV-vis 測定により導入した Cr 種の状態を解析した結果,含有 Al 量に関わらず, Cr⁶⁺および Cr³⁺種に帰属されるピークが観測された. 注目すべきことに,Cr 担持量に依存して Cr 種の原 子価が変化し,比較的高い Cr 担持量の場合には Cr³⁺ を含む Cr₂O₃に特徴的な緑色を呈する粉末が得られ ることを確認した.一方,Cr 担持量の低下に伴い試 料は淡黄色-白色へと連続的に変化し,これは導入 した Cr 種が Cr⁶⁺として存在する割合が向上するこ とが考えられる.つまり,ゼオライト表面に接する Cr 種の原子価は+6 価である一方,Cr 種の凝集もし くは Cr 種上へのさらなる担持・積層を経て形成し たゼオライトに接触しない Cr 種は+3 価の原子価で 存在すると考えられる.

異なる前駆体では、すべてのサンプルにおいて 300-500 ℃ に水素消費ピークが確認された.注目 すべきことに Cr(acac)₃ は最も低温側に消費ピーク が確認された.また、Cr₂(SO₄)₃,CrCl₃ では 500-700 ℃ に新たに孤立した Cr⁶⁺の還元に由来する水素消費 ピークが確認された⁴⁾. この結果から Cr の状態が 異なっていることが示唆された.硝酸クロム(III), 酢酸クロム(III)を用いた Cr 担持金属触媒の PDH 反応活性評価の結果を Fig. 1a,b に示す.硝酸クロ ム(III)を担持したサンプルでは、初期活性の転換率 28%、C3=(プロピレン)の収率 26%を示した.酢酸 クロム(III)では、初期活性の転換率 18%、C3=(プロ ピレン)の収率 18%を示した.このことから前駆体 の違いにより,Cr の状態が異なることで反応活性 に違いが生じていると考えられる.

Cr 原子価により C-H 結合活性が大きく異なることを見出した.

Fig. 1 Catalytic performance of 1 wt% metal-supported (a) $Cr(NO_3)_3$ /Silicalite-1 in PDH reaction.. (b) $Cr(OAc)_3$ /Silicalite-1 in PDH reaction.

- 1) Z. Qu, et al., Inorg. Chem. Front 9, 3096 (2022).
- 2) T. Yokoi, et al., Chem. Commun. 56, 5913 (2020).
- 3) T. Yokoi, et al., Commun. Chem., 3, 129 (2020)
- 4) D. He, et al., ChemCatChem., 10, 5434 (2018).

Al ペアサイトを有するゼオライトの合成と Sr²⁺イオン交換特性評価

(東北大*・東工大**) 〇今西 佳保*・藪下 端帆*・大須賀 遼太*・ 真未 祥子子*・蟹注 澄志*・横井 俊之**・村松 淳司*

1. 緒言

ゼオライト骨格内の Si 原子を Al 原子で置換す ることで電荷の不均衡が生じ、イオン交換能が発 現する。したがって、骨格内の Al 原子位置を制 御することは、イオン交換サイトの位置を制御す ることを意味する。図 1 に示すような Q⁴(2AI)構 造 (Q⁴(nAl) = Si(OSi)_{4-n}(OAl)_n) は、Al 原子が対に なった構造であり、2価カチオンの交換に効果的 な部分構造である。しかし、ゼオライト骨格内の Al 原子は静電的な相互作用により、互いに離れる ようにして配置される傾向があるため」、ゼオラ イト骨格内へのQ⁴(2AI)構造の構築は困難である。 本研究では、ゼオライトの水熱合成時に用いる原 料の局所構造がゼオライト骨格中に転写される ことに着目し²⁾、Q⁴(2AI)構造の構築を試みた。具 体的には、錯体重合法により Q⁴(2AI)構造を多く 含む非晶質シリカ-アルミナ(SA)を調製した後、こ の前駆体を原料として水熱合成することで、 Q⁴(2AI)構造を多く含むゼオライトが合成可能で あるかどうか検討した。

2. 実験

非晶質 SA (Si/Al = 2.5) は、既報の論文に沿って 合成した ^{3,4})。 CHA 型ゼオライトは、まず脱イオ ン水、NaOH 水溶液、N,N,N-トリメチル-1-アダマ ンチルアンモニウムヒドロキシド、SiO₂ (Carplex) の混合物を t_1 時間撹拌し、その後、非晶質 SA を 加え、さらに t_2 (= 48 – t_1)時間撹拌させたのち、 このゲルを170 °C で 5 日間水熱処理することで得 た⁴⁾。以降は、得られた試料を CHA- t_2 (t_2 = 0, 3, 6, 9, 12, 24) と表記する。さらに、SrCl₂ 水溶液でイオ ン交換した後、ICP-AES により Sr²⁺交換量を測定 することで、CHA- t_2 のイオン交換特性を評価した。

3. 結果および考察

XRD パターンから、CHA- t_2 はすべて CHA 型 ゼオライトであると同定した。また、ICP-AES 測 定により算出した各試料の Si/Al 比は、5.7–5.8 で ほぼ一定であった。図 2 に、CHA- t_2 の ²⁹Si MAS NMR スペクトルのピーク面積比から求めた、各 試料の Q⁴(2Al)と Q⁴(1Al)の割合を示す。Q⁴(2Al) の割合は $t_2 = 0$ から $t_2 = 9$ まで増加するに伴い14% から 23%まで増加したが、 $t_2 = 12, 24$ では減少し、 15%となった。本研究では、 t_2 を変化させること

で合成ゲル中の Q⁴(2Al)構造の保持状態を最適化 し、ゼオライト骨格内への Q4(2AI)構造の構築を 試みた。 $t_2 \leq 9$ では t_2 を増加させるに従い液相中 への Q4(2AI)種の供給量が増加することで、ゼオ ライト骨格内に導入される Q⁴(2Al)種の割合が増 加したが、 $t_2 > 9$ では液相中に供給された Q⁴(2Al) 種の分解が進行したことでゼオライト骨格内へ の導入量が減少したと考えられる。2価カチオン に対するイオン交換能を評価するため、各試料に 対し Sr²⁺イオン交換処理を行ったところ、最も Q⁴(2Al)の割合が高かった CHA-9 は、最も高い Sr²⁺ 交換量を示した (50 mg g_{CHA}-1)。以上から、合成ゲ ル中の Q⁴(2AI)構造の保持状態の制御により、ゼ オライト骨格内に含まれる Q⁴(2Al)構造の比率お よび Sr²⁺交換能の制御が可能であることが明らか となった。発表では、本手法により MOR 型ゼオ ライトを合成した結果についても報告する。

OSi OSi OSi 図 1. Q⁴(1Al)構造(左)および Q⁴(2Al)構造(右)

図 2. 各試料中の Q⁴(1Al)と Q⁴(2Al)の比率

1) E. Dempsey, G. H. Kuehl, D. H. Olson, *J. Phys. Chem.*, 1969, **73**, 387–390.

2) T. Nishitoba, N. Yoshida, J. N. Kondo, T. Yokoi, *Ind. Eng. Chem. Res.* 2018, **57**, 3914–3922.

 T. Xiao, M. Yabushita, T. Nishitoba, R. Osuga, M. Yoshida, M. Matsubara, S. Maki, K. Kanie, T. Yokoi, W. Cao, A. Muramatsu, *ACS Omega*, 2021, 6, 5176– 5182.

4) M. Yabushita, Y. Imanishi, T. Xiao, R. Osuga, T. Nishitoba, S. Maki, K. Kanie, W. Cao, T. Yokoi, A. Muramatsu, *Chem. Commun.*, 2021, **57**, 13301–13304.

調製法の異なるチタノシリケートに対する 酸処理の触媒反応への影響

(東京工大*・産総研**) 〇山田 駿介*・保田 修平*・松本 剛* ・野村 淳子*・今 喜裕**・横井 俊之*

1. 緒言

MFI型チタノシリケート(TS-1)は、過酸化水素 によるクリーンな酸化反応プロセスの触媒として 盛んに応用されている¹⁾。TS-1は、酸処理によって、 ゼオライト骨格に組み込まれなかった Ti 種を除去 でき、触媒性能を向上させることができる²⁾。

TS-1 への酸処理に関する検討はこれまで種々な されており、ノウハウ的な手法で実施されているこ とが多い。過酷な条件であればあるほど骨格内 Ti 種 も除去されてしまうばかりか、結晶性も低下させて しまう。酸化反応に有効な Ti 種を残し,悪影響を及 ぼす Ti 種のみを効率的に除去する手法の開発が求 められている。本研究では、Si/Ti 比を変化させた以 外は条件を同一にして各種 TS-1 を作成し、酸処理 によってその構造及び1-ヘキセンのエポキシ化反応 に与える影響を検証した。

2. 実験

2.1 TS-1 の合成

TS-1 の合成原料としてテトラエトキシシラン (TEOS)、テトラブトキシチタン(TBOT)、テトラプロ ピルアンモニウムヒドロキシド(TPAOH)を使用し た。原料モル比を1TEOS:xTBOT:0.12TPAOH:16 H₂O(x=0.010,0.012,0.014,0.020,0.033)とし、170℃、 5 日間水熱合成のち焼成により合成した(仕込み Si/Ti モル比としては 30,50,70,85,100、各々Entry 1 ~5と表記 Table 1)。酸処理として6MHNO3aqを TS-1に加え、20時間還流した。

2.21-ヘキセンのエポキシ化反応

各 TS-1 (10 mg)、1-ヘキセン (1 mmol)、H₂O₂ (1 mmol)、アセトニトリル (2 mL)を加え、30 ℃で反応 させ、反応初期における Ti 1 モル辺りのエポキシの 生成モル量を単位時間で割った TOF (h⁻¹)を用いて反 応性を比較した。

3. 結果と考察

X線回折パターンより、得られた各試料は MFI 構 造を有していた。また、酸処理前後の ICP-AES によ る Si/Ti 比の測定結果を Table1 に示した。Si/Ti=30-85 の Entries 1-4 に関しては、酸処理前後で Si/Ti 比 が同等程度であったのに対し、Entry5 では、Ti が大 幅に除去されたことがわかった。Entries 1-5 の各 TS-1 酸処理前後での 1-ヘキセンのエポキシ化反応結果 を Figure 1 に示した。酸処理前の Entry 2 が最も反応 活性が高く、TOF は 53 を示した。UV スペクトルよ

り、Entry 2 の酸処理前試料は 250nm にブロードな ピークが観測された。このピークは八面体配位の Ti 種に起因するとされており、この Ti の構造がエポキ シ化反応をアシストしている可能性が示唆された³⁾。 Table 1 Si/Ti molar ratio of the TS-1 before and after the acid treatment.

Entry	Si/Ti ^a preparation	Si/Ti ^a before	Si/Ti ^a after
1	30	41	51
2	50	45	45
3	70	58	63
4	85	71	71
5	100	88	339

^a Determined by ICP-AES

Figure 1. Catalytic performances of the TS-1 samples before and after acid treatment.

一方、Entry 5 では酸処理前ではほとんど反応活性 がなく、TOF は 0.3 であった。酸処理により Ti 量が 大幅に減少したが、TOF は 13 に向上した。Ti 量は 非常に少ないが、エポキシ化反応の活性点となる Ti 種が TS-1 中に残存していることがわかった。

Entryl では酸処理後に反応活性が向上した(TOF: 10から34)。これは、ゼオライトの骨格内に組み込 まれなかった Ti 種が酸処理により除去されたため と考えられる。Entries 1-4 は、酸処理を実施するこ とで、同等の反応活性を示すことが明らかとなった。 また、Entries 1-4 の酸処理後試料における UV スペ クトルでは、いずれも同様なピーク形状を示した。 以上から、骨格外の Ti 種が酸処理により除去され、 骨格内 Ti だけが残存したことにより、各 TS-1 中の Ti 周辺構造が均一化されていると考えられる。

T. Tatsumi *et al*, J. Am. Chem. Soc. 130, 10150 (2008).
W. Yang *et. al.*, Microporous Mesoporous Mater. 314, 110862(2021)

3) J. Yu et. al., Chin. J. Catal., 42, 2189 (2021)

8員環ゼオライトの合成および細孔特性に及ぼす 界面活性剤添加効果

> $(東京工業大^{*1})$ 〇上舘 和史^{*1}·伊賀 悠大^{*1}·陸 [※]^{*1}·澤田 真人^{*1}· ^{*0+6} 松本 剛^{*1}·保田 修平^{*1}·野村 ²淳子^{*1}·横井 俊之^{*1}

1. 緒言

規則的な多孔性構造を有するゼオライト材料は, 不均一系触媒材料として注目を集める材料である. 近年, Methanol-to-Olefin (MTO)反応に代表される 様々なゼオライト触媒材料開発に関する研究が行わ れており,特に重要化成品原材料であるエチレンや プロピレン等の低級オレフィンを高効率で与え得る 触媒材料が注目を集める.数ある触媒材料の中でも, 8 員環細孔構造を持つ小中員環型ゼオライト触媒は, 低級オレフィン選択性が高いことが知られており, 中でも DDR 型ゼオライトは有望視される材料の一 つである.しかし同時に,他の小員環型ゼオライト 触媒同様に細孔閉塞に伴う触媒失活が克服すべき課 題の一つである.

最近我々は、小員環型 AEI 型アルミノシリケート ゼオライト¹および中員環型 CON 型ボロアルミノシ リケートゼオライト (CIT-1) 触媒²において、それ ぞれの合成ゲルにカチオン性界面活性剤である臭化 ヘキサデシルトリメチルアンモニウム (CTAB)を 共存させる手法を駆使することで、それぞれのゼオ ライト触媒の粒子形態および Al 分布を制御可能で あり、Propylene-to-Butene および MTO 反応触媒寿命 を伸長化することが可能であることを報告している. 同様の手法は、DDR 型ゼオライトを用いた MTO 触 媒開発においても有効であると期待される.

そこで本研究では、DDR 型ゼオライト(ZSM-58)触 媒³⁾の形成と、基礎物性および MTO 触媒特性に、合 成ゲル中における CTAB の共存が及ぼす効果に関し て明らかにするべく検討を行なった.

2. 実験

有機構造規制剤である Methyltropinium iodide (MTI)は既報に従い合成した⁴⁾. 続いて、既報³⁾を参 考に Cab-O-Sil (M7D, Si 源), Al₂(SO₄)₂ (Al 源), NaOH, MTI, CTAB, および 6wt% DDR 型ゼオライト(seed) を含む合成ゲル (仕込み Si/Al 比: 30-400, CTAB/Si 比: 0, 0.01)を調製し, 160 °Cで2日間水熱合成を行 った. 得られた試料をアンモニウムイオン交換した 後, 600 °C で6時間焼成した. 最終的に得られた試 料の同定と基礎物性は, ICP-AES, XRD, SEM, 窒 素吸着法, および NH₃-TPD により測定した.

3. 結果と考察

得られた試料の XRD パターンを図 1 に示す. CTAB 共存(ZSM-58_C)および非共存の合成ゲルより 調製した試料(ZSM-58)いずれの場合においても DDR 型ゼオライト構造に特徴的回折パターンが得られ,合成ゲル中への CTAB の共存は,DDR 型構造の形成を阻害しないことを確認した.

図 1. a) ZSM-58 および b) ZSM-58_C の XRD パター ン.

図 2 に示す SEM 画像より, ZSM-58_C の方が ZSM-58 と比較して微粒子化していることを確認さ れた.また,表 1 に示す ZSM-58(_C)の基礎物性測定 結果より, ZSM-58_C の方が ZSM-58 よりも外表面積 が増大していることが確認された.これらの結果か ら,合成ゲル中における CTAB の共存が, ZSM-58 の 結晶化過程に顕著な影響を及ぼすことが示唆された. 当日は,これら結晶化過程に及ぼす影響と, MTO 触 媒特性に現れる影響に関する詳細を議論する.

図 2. a) ZSM-58 および b) ZSM-58_C の SEM 画像

表 1.	ZSM-58(_	_C)の	Si/Al 比,	酸量,	および絹	細孔特性
------	----------	------	----------	-----	------	------

Comula	Si/Al ^a	酸量 ^b	比表面積。	細孔容積 ^c	外表面積。	
Sample		/mmol (g-cat)-1	/m ² g ⁻¹	/cm ³ g ⁻¹	/m ² g ⁻¹	
ZSM-58	38	0.102	375	0.131	40.4	
ZSM-58_C	33	0.103	400	0.131	67.8	
a: ICP, b: NH ₃ -TPD, c : N ₂ adsorption						

T. Yokoi, et al., Catal. Sci. Technol., 11, 5839 (2021).
T. Yokoi, et al., Ind. Eng. Chem. Res., 61, 1733 (2022).

- 3) E. Hayakawa, et al., Int. J. Chem. Eng., 11, 6 (2020).
- 4) E. Hayakawa, et al., Membranes, 11, 623 (2021).