
Faster Ontology Reasoning with Typed Propositionalization

Maxime Clement Ryutaro Ichise

National Institute of Informatics, Tokyo, Japan

Ontology reasoning is an important but complex problem allowing the discovery of new knowledge and the query
and maintenance of complex data. For decision making in real-time systems, faster approach such as decision tables
are often used. In this paper, we propose a technique to perform efficient ontology reasoning with decision tables.
Our experiments show a significant improvement of the reasoning time compared to a naive approach.

1. Introduction

Ontologies [Staab and Studer, 2010] provide the vocab-

ulary necessary to represent knowledge related to a spe-

cific domain by formally defining concepts, relationships

between these concepts, and instances of these concepts.

In recent years, ontologies have been widely used in many

fields such as bioinformatics [Consortium, 2014] or recom-

mender systems [Middleton et al., 2004, Kang et al., 2014],

allowing experts to easily exchange knowledge and reason

on well-structured data.

Similarly, ontology reasoning has become a well-adopted

technique for the maintenance and query of ontologies, or

the matching of different ontologies. Thanks for flexible and

expressive rule languages [Horrocks et al., 2004] and power-

ful reasoners [Sirin et al., 2007, Shearer et al., 2008], rules

can easily be written and maintained by non-experts and

can easily be adapted to changing ontologies. The main

downside of this expressiveness and flexibility is its reason-

ing complexity. Ontology rules, similarly to first-order logic,

use variables that can be assigned to the entities of the on-

tology. Reasoning then consists in evaluating the rules by

considering each combination of entities to the variables

and checking if the conditions of the rules are true. This

is a computationally complex operation which have been

shown to limit the applicability of ontologies to real-time

systems [Hashimoto et al., 2017].

In some applications, entities are constantly changing and

reasoning must be performed as fast as possible, making

typical reasoning methods based on first-order logic too

slow. Instead, decision tables can be used to rapidly com-

pute decisions but are hard to maintain. It is possible to

transform rules used in ontology to decision table through a

process known as propositionalization [Krogel et al., 2003].

This process has several downsides, requiring to already

know the values for the variables (i.e., the entities of our

ontology) and generating a decision table of exponential

size.

In this paper, we are interested in allowing efficient rea-

soning with ontologies through the use of decision tables.

We propose a method to transform rules to propositional

form using placeholders instead of real entities, allowing

us to perform a large part of the computation in advance.

Placeholders are generated with classes corresponding to

Contact: maxime-clement@nii.ac.jp

the variables used in the rules, creating a correspondance

between placeholders and variables. During reasoning, we

only need to map the real-world entities to the placehold-

ers instead of mapping them to all the variables of the

rules. In our experiments, we use a car ontology designed

for automated-driving where fast reasoning time is critical

to avoid accident. We show that our method is much faster

than the naive propositionalization used when directly rea-

soning in first-order logic and that even complex situations

can be handled within 122ms.

2. Preliminaries

In this section, we first briefly explain how we repre-

sent ontologies using first-order logic. We then describe the

naive propositionalization necessary to use decision tables

to reason with ontology rules.

2.1 Ontologies
An ontology formally defines the vocabulary necessary

to describe some specific domain, usually in the form of a

set of entities, classes, and properties. Entities are used to

represent real-world objects, classes are collections of enti-

ties with a common type, and properties are relationships

between entities.

We use first-order logic to formally write ontologies such

that entities are constants, classes are unary predicates, and

properties are binary predicates.

Example 2..1 (Ontology). The knowledge “the car A is

in front of the bike B” is written as

Car(a),Bike(b), InFrontOf(a, b)

where a and b are entities, Car and Bike are classes, and

InFrontOf is a property.

In order to reason with an ontology, we use rules of the

form R = body → head where body and head are conjunc-

tions of literals. Similary to the logical implication, this

means that if the content in body is true, then the content

in head should also be true. In order to have general rules

that can be applied to multiple entities, variables that can

be replaced with any entity of the ontology are used. We

refer to the set of variables used in a rule R as var(R).

Example 2..2 (Rule). The rule “if something is a car, it

is a vehicle” is written as

Car(X) → Vehicle(X)

1

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

1F1-02

where X is a variable.

2.2 Propositionalization
Propositionalization is the process of converting informa-

tion from relational form (like in ontologies) to proposi-

tional form made exclusively of true or false propositions.

Rules in propositional form corresponds directly to a deci-

sion table where each rule represents a row such that its

body is the set of conditions and its head the set of actions.

To fit rules written in first-order logic into a decision ta-

ble, each assignment of entities to the variables must be

considered. Once an assignment is given, the rules can be

converted to propositional form where each predicate is re-

placed by a proposition corresponding to the assignment.

Similarly, knowledge about entities is also propositional-

ized, giving us a set of true propositions that can be used

to determine whether the body of a rule is true or not.

Example 2..3 (Rule Propositionalization). Given a rule

Car(X) → Vehicle(X) and an assignment {X : a} mean-

ing entity a is assigned to variable X, we generate the

propositional rule

Cara → Vehiclea

Assuming the knowledge Car(a),Bike(b), we generate the

propositions

Cara,Bikeb

We can now evaluate the previous rule and determine that

its body is true since Cara is true, which means that

Vehiclea is also true.

There exists several limitions with such naive proposi-

tionalization. First, the rules generated are for some spe-

cific entities, meaning that if entities change, then new rules

should be generated. Second, each combination of entities

to variables need to be considered, which quickly leads to

an intractable number of propositional rules.

3. Typed Propositionalization

In order to improve the conversion from ontology rules to

decision table, we propose typed propositionalization which

uses a preprocessing step that performs propositionalization

without the need for entities to be defined. The idea of

this method is to instantiate the rules in advance, using

placeholders instead of the real entities. When reasoning,

real entities only need to be assigned to these placeholders,

which requires less computation and makes the reasoning

faster.

Definition 3..1 (Typed Placeholder). We define T =

{C0,C1, . . .} as a typed placeholder where Ci is an unary

predicate (i.e., a class).

For each rule R, a placeholder is associated to each vari-

able using the classes of the variable. For each variable

v ∈ var(body), a placeholder Tv = {C|C(v) ∈ body} is gen-

erated where body is the body of rule R. When all the

variables in R have a non-empty placeholder, we say that

R is well-typed.

The rule R is then converted to propositional form RT
using the assignment {v : Tv|v ∈ var(body)} such that each

property P(x, y) is replaced by a proposition PTxTy and

each class predicate in the body is removed.

Example 3..1 (Typed Propositionalization). Given a well-

typed rule

Car(c) ∧Vehicle(v) ∧ InFrontOf(v, c) → Warning(c)

we generate the placeholders:

• Tc = {Car} (placeholder for c);

• Tv = {Vehicle} (placeholder for v).

We then generate the rule RT .

InFrontOfTvTc → WarningTc

After this preprocessing step, we have the set of all place-

holders T and the generated propositional rules.

4. Reasoning with Typed Proposition-
alization

Once the rules have been propositionalized using place-

holders, we are ready to perform reasoning with real en-

tities. To reason using our typed-rules, we need to match

the entities to their corresponding placeholder, generate the

corresponding typed-facts, and execute the rules. We thus

separate the reasoning into 4 phases.

1. Entity matching: match compatible entities with the

placeholder.

2. Knowledge propositionalization: create propositional

facts based on the matching.

3. Typed Reasoning: trigger the rules based on the cre-

ated propositional facts.

4. Interpretation: transpose the new facts for their cor-

responding entities (instead of the placeholders).

Because several entities can correspond to a same place-

holder, there might be several assignment to consider and

steps 2-4 need to be repeated for each possible assignment.

4.1 Entity Matching
Entity matching consists in creating, for each placeholder

T , the set of entities ET = {e|T ⊆ classes(e)} where

classes(e) is the set of classes of the entity e. If for at least

one placeholder T there is |ET | > 1, then we need to con-

sider multiple assignments of entities to the placeholders.

The number of total assignments to consider is
∏

T∈T
|ET |.

We refer to an assignment A as a set of pair (T : e) meaning

that entity e is mapped to placeholder T .

Example 4..1 (Entity Matching). Given the placeholders

T = {Tc = {Car}, Tv = {Vehicle}}, and two entities a

and b such that Car(a),Vehicle(a),Bike(b),Vehicle(b),

we generate the set of matching entities for each place-

holder: ETc = {a}; ETv = {a, b}. We can thus consider two

assignments A1 = {Tc : a, Tv : a} and A2 = {Tc : a, Tv : b}.

2

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

1F1-02

Entities
Naive Propositionalization Typed Propositionalization

Propositional Rules Reasoning Time (ms) Propositional Rules Reasoning Time (ms)

6 105360 591 300 3

8 616560 6230 300 4

10 2436840 31419 300 4

12 OOM - 300 7

14 OOM - 300 13

16 OOM - 300 35

18 OOM - 300 70

20 OOM - 300 122

Table 1: Comparison of the reasoning time and number of propositional rules using naive and typed propositionalization

with 26 placeholders and 300 rules. OOM indicates settings where we ran out of memory.

4.2 Knowledge Propositionalization
Given an assignment A, we propositionalize all knowl-

edge by replacing references to an entity e by its assigned

placeholder T .

Example 4..2 (Knowledge Propositionalization). Given

the assignment A2 = {Tc : a, Tv : b}, and the knowledge

Car(a),Vehicle(a),Bike(b),Vehicle(b), InFrontOf(b, a),

we generate the propositional knowledge

CarTc ,VehicleTc ,BikeTv ,VehicleTv , InFrontOfTvTc ,

4.3 Typed Reasoning
Now that we converted facts expressed for our entities to

facts expressed for the placeholders, we can evaluate each

propositional rule RT .

Example 4..3 (Reasoning). Given the propositional

rule from Example 3..1, and the propositional knowledge

CarTc ,VehicleTc ,BikeTv ,VehicleTv , InFrontOfTvTc ,

we obtain the new knowledge WarningTc since the body

of the rule (InFrontOfTvTc) is part of our knowledge

base.

4.4 Interpreting the Results
Once all rules have been evaluated for an assignment A,

we need to convert the resulting predicates which are ex-

pressed for the placeholders T into first-order predicates

expressed for the real-world entities. This conversion is the

reverse of the knowledge propositionalization where we now

replace each placeholder T by its corresponding entity e in

the assignment A.

Example 4..4 (Interpretation). Given the new knowledge

WarningTc obtained with the assignment A2 = {Tc :

a, Tv : b}, we interpret it as Warning(a).

Once this interpretation has been done for the results

obtained with each possible assignment, we obtained all the

possible implications for the current state of the ontology.

5. Experimental Results

We now present results obtained using the

ADAS ontology∗1 [Zhao et al., 2017] written in

OWL2 [Grau et al., 2008, Motik et al., 2009] and rules

∗1 http://ri-www.nii.ac.jp/ADAS/index.html

written in SWRL [Horrocks et al., 2004]. We compare

the naive propositionalization presented in Section 2.2

and typed propositionalization presented in Section 3.

and 4.. Both methods were implemented in Java using

the OWLAPI [Horridge and Bechhofer, 2011] to interact

with the ontology, using an Intel Core i7-7700K run-

ning at 4.20GHz and with 1GB of memory dedicated

to the JVM. We use a set of 300 SWRL rules with

the number of variables ranging from 2 to 6. This

set was previously used for testing the speed of ontol-

ogy reasoners [Hashimoto et al., 2017] and we manualy

made minor modifications to ensure all rules are well-

typed. This dataset generated 26 placeholders using our

typed-propositionalization.

Table 1 shows the reasoning time (average over 10 runs)

and number of propositional rules for the naive and typed

propositionalization varying the number of entities. For

naive propositionalization, we first observe the very high

number of propositional rules generated, going from 105360

with 6 entities to more than 2 millions with 10 entities.

Generating and evaluating such high number of rules also

leads to a high reasoning time, taking 591ms with 6 entities

and more than 30s with 10 entities. This leads the naive

propositionalization to require more memory than available

with more than 10 entities.

For typed propositionalization, we see that the number of

propositional rules is always 300, thanks for our approach

using placeholders which always produces one propositional

rule per SWRL rule. Even if the number of propositional

rules does not change, we observe that the reasoning time

increases exponentially with the number of entities. This is

due to the evaluation of the rules needing to be repeated

for each possible assignment of entities to the placeholders.

Despite the exponential increase of the reasoning time, our

proposed approach allows to obtain runtimes that are ap-

propriate for real-time reasoning, reaching only 122ms with

20 entities.

These results show that it is possible to convert rules

for ontology reasoning into the format of decision tables.

With typed propositionalization, little memory is required

to store the rules in propositional form and the reasoning

remains fast enough for real-time decision making in situa-

tions of medium complexity (up to 20 entities).

3

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

1F1-02

6. Conclusion and Future Works

Reasoning with ontologies is a complex problem which

can limit its use with real-time applications. In this paper,

we proposed a typed propositionalization technique to effi-

ciently represent ontology rules as decision tables, allowing

a faster reasoning better suited for real-time applications.

Our experiments showed that our proposed approach leads

to a much better reasoning time and memory complexity

compared to a naive approach.

In future works, we will extend our technique to also de-

fine placeholders based on some relations, in addition to

using the classes of the variables. Furthermore, we plan on

studying ways to compress and decompose the rules once in

propositional form. We believe methods based on Binary

Decision Diagrams [Akers, 1978] or Zero-Suppressed Deci-

sion Diagrams [Minato, 1993] to be the most promising.

Acknowledgements

This work was partially supported by the New En-

ergy and Industrial Technology Development Organization

(NEDO).

References

[Akers, 1978] Akers, S. B. (1978). Binary decision dia-

grams. IEEE Transactions on computers, (6):509–516.

[Consortium, 2014] Consortium, G. O. (2014). Gene ontol-

ogy consortium: going forward. Nucleic acids research,

43(D1):D1049–D1056.

[Grau et al., 2008] Grau, B. C., Horrocks, I., Motik, B.,

Parsia, B., Patel-Schneider, P., and Sattler, U. (2008).

Owl 2: The next step for owl. Web Semantics: Science,

Services and Agents on the World Wide Web, 6(4):309–

322.

[Hashimoto et al., 2017] Hashimoto, K., Ishida, Y., Ichise,

R., Wagatsuma, H., and Tamukoh, H. (2017). A funda-

mental study on the performance of the logical reason-

ing system by using the semantic web techniques when

it is applied to real vehicle automated driving to detect

possible dangers predictively. In Proceedings of the 61st

Annual Conference of the Institute of Systems, Control

and Information Engineers, volume 324, pages 681–684.

In Japanese.

[Horridge and Bechhofer, 2011] Horridge, M. and Bech-

hofer, S. (2011). The owl api: A java api for owl on-

tologies. Semantic Web, 2(1):11–21.

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P. F.,

Boley, H., Tabet, S., Grosof, B., Dean, M., et al. (2004).

Swrl: A semantic web rule language combining owl and

ruleml. W3C Member submission, 21:79.

[Kang et al., 2014] Kang, Y.-B., Pan, J. Z., Krishnaswamy,

S., Sawangphol, W., and Li, Y.-F. (2014). How long will

it take? accurate prediction of ontology reasoning per-

formance. In Proceedings of the 28th AAAI Conference

on Artificial Intelligence, pages 80–86.

[Krogel et al., 2003] Krogel, M.-A., Rawles, S., Železnỳ, F.,

Flach, P. A., Lavrač, N., and Wrobel, S. (2003). Compar-

ative evaluation of approaches to propositionalization. In

Proceedings of the 13th International Conference on In-

ductive Logic Programming, pages 197–214. Springer.

[Middleton et al., 2004] Middleton, S. E., Shadbolt, N. R.,

and De Roure, D. C. (2004). Ontological user profiling

in recommender systems. ACM Transactions on Infor-

mation Systems (TOIS), 22(1):54–88.

[Minato, 1993] Minato, S.-i. (1993). Zero-suppressed bdds

for set manipulation in combinatorial problems. In Pro-

ceedings of the 30th international Design Automation

Conference, pages 272–277. ACM.

[Motik et al., 2009] Motik, B., Patel-Schneider, P. F., Par-

sia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra,

R., Horrocks, I., Ruttenberg, A., Sattler, U., et al.

(2009). Owl 2 web ontology language: Structural speci-

fication and functional-style syntax. W3C recommenda-

tion, 27(65):159.

[Shearer et al., 2008] Shearer, R., Motik, B., and Horrocks,

I. (2008). Hermit: A highly-efficient owl reasoner. In

OWLED, volume 432, page 91.

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C.,

Kalyanpur, A., and Katz, Y. (2007). Pellet: A practi-

cal owl-dl reasoner. Web Semantics: science, services

and agents on the World Wide Web, 5(2):51–53.

[Staab and Studer, 2010] Staab, S. and Studer, R. (2010).

Handbook on ontologies. Springer Science & Business Me-

dia.

[Zhao et al., 2017] Zhao, L., Ichise, R., Liu, Z., Mita, S.,

and Sasaki, Y. (2017). Ontology-based driving deci-

sion making: A feasibility study at uncontrolled intersec-

tions. IEICE Transactions on Information and Systems,

E100.D(7):1425–1439.

4

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

1F1-02

