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We propose a learning-based system of selective dual-arm grasping and use Convolutional Neural Networks
(CNN) for grasping point prediction and semantic segmentation. First, the network learns grasping points with
the automatic annotation. and the grasping points are automatically calculated based on the shape of an object
and annotated for both single-arm and dual-arm grasping. The robot then samples various grasping points with
both grasping ways and learns optimal grasping points and grasping way. As a result of multi-stage learning, the
robot learns to select and execute optimal grasping way depending on the object status. In the experiments with
the real robot, we demonstrated that our system worked well in warehouse picking task.

1. Introduction
Recently, learning-based approaches have become popular in

robot grasping, and self-supervised method and simulation-based

one are both commont. However, the main difficulty of the

learning-based approaches is the small variety of the grasping mo-

tion. These approaches deal only with one arm, but a robot can

grasp more various objects with two arms, and many studies show

the advantage of dual-arm manipulation [Harada 12, Edsinger 07].

Recent dual-arm robots such as Baxter∗1 are expected to manip-

ulate various objects with two arms. However, learning dual-arm

grasping is difficult because a robot needs to sample with both

grasping ways for self-supervised approach [Pinto 16, Levine 16],

and simulation-based one [Mahler 17, Viereck 17] needs to repro-

duce the grasping condition of dual-arm grasping, which is more

complex than single-arm one. In this paper, we tackle the diffi-

culties of learning to grasp with two arms and propose to com-

bine supervised learning with the automatic annotation and self-

supervised learning.

This paper focuses on how to learn to selectively grasp with two

arms as shown in Fig.1, and we propose a learning-based system

of selective dual-arm grasping. In the system, we use Convolu-

tional Neural Networks (CNN) for grasping point and semantic

segmentation. The network first learns grasping points with auto-

matic grasping point annotation, and the automatic annotation is

based on the geometric constraints of objects. The robot then sam-

ples various grasping points, tries to grasp by both grasping way

and learns where to grasp and which grasping way is optimal. In

detail, the robot executes both grasping way with various grasp-

ing points and collect its grasping data with the trained network,

and we train the network again with the sampled data for the real

world adaptation. Finally, the robot selects and executes optimal

grasping from single-arm and dual-arm ones with the adapted net-

work. The whole system of the multi-stage learning is described

in Fig.2, and this learning-based system adapts the network to var-

ious objects and requires fewer grasping trials with the real robot.

In the experiments, we demonstrated our system worked well in

warehouse picking task.
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Figure 1: The robot learns how to grasp and whether single-arm

or dual-arm grasping is optimal to execute corresponding to the

environment. Images are from [Kitagawa 18]
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Figure 2: We propose a multi-stage learning system of dual-arm

selective grasping. The CNN first learns how to grasp with auto-

matic grasping point annotation, and the robot samples grasping

with the trained network and learns with the collected data. Fi-

nally, the robot selectively executes dual-arm grasping with the

adapted network.

2. Related Work
Learning-based Grasping. Recent approaches use CNN to

predict the success probabilities of grasping pose [Pinto 16]
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[Mahler 17], and semantic segmentation network is also used for

the prediction of grasping pose [Kusano 17]. In this paper, we fo-

cus on the grasping ability of a vacuum gripper and predict grasp-

ing point with CNN. In order to predict grasping point (x, y) on

RGB image, our approach segments whole region into two region;

graspable and ungraspable and predicts the success probabilities

of for both single-arm and dual-arm grasping for each pixel.

Self-Supervised Learning of Grasping. One main stream of

learning-based grasping is self-supervised approach, and the pre-

vious study shows its effectiveness with high success rate of grasp-

ing [Pinto 16]. This study uses Mixture of Gaussians (MOG) back-

ground subtraction algorithm as a primitive algorithm, but it is not

efficient enough for sampling, so that it requires more than 300 tri-

als for each object on average, which is time consuming and high

workload for robot. In this paper, we give a primitive grasping al-

gorithm beforehand, and a robot samples grasping efficiently and

learns grasping in short time.

3. Learning with Automatic Annotation
3.1 Automatic Grasping Point Annotation

For the automatic annotation, we design a primitive grasping al-

gorithm. We prepare several RGB images for each object and cal-

culate the grasping points for both single-arm and dual-arm grasp-

ing from geometric conditions of the object. First, we do back-

ground subtraction on RGB image to get the object region, and the

single-arm grasping point then is calculated as a center point of

the region as shown in Fig.3(a). For dual-arm grasping points, we

assume that the points are lined in the first principal component of

the object region, so that we do PCA on x and y axes of the ob-

ject region and annotate them as shown in Fig.3(a). Therefore, the

background subtraction and geometric analysis such as PCA on

the object region is implemented as the primitive algorithm, and

the generated images are used for the dataset synthesis.

(a) Single-arm grasping
point

(b) Dual-arm grasping
points

Figure 3: The object region is inside the green boundary, and the

annotated grasping points are drawn as red crosses. We first do

the background subtraction on an original RGB image to get the

object region. A single-arm grasping point (a) and dual-arm grasp-

ing points (b) are calculated from the primitive grasping algorithm

from the region.

3.2 Grasping Dataset Synthesis∗2
Using the generated data with the automatic annotation, we syn-

thesize a dataset for semantic and grasping point segmentation.

For the dataset synthesis, we do image stacking [Dwibedi 17] and

paste subtracted object images randomly on a background image

in the real experimental environment. With stacking several RGB

images of object images on one background image, the synthe-

sized image reproduces a clutter such as warehouse picking envi-

∗2 The subsections are from [Kitagawa 18]

ronment, where objects occlude with each other. The pixelwise

semantic labels are simultaneously annotated as the RGB image

synthesis, and the grasping points are annotated as pixelwise gras-

pable region. The synthesized images of pixelwise semantic labels

and graspable label for both single-arm and dual-arm grasping are

shown in Fig.4(b), Fig.4(c), and Fig.4(d). If 10% of an object re-

gion is hidden by other objects because of overlaps, we regard the

overlapped object as ungraspable because of its physical occlusion

and do not annotate its grasping points. Therefore, an object 90%

of whose region is visible is treated as placed on the top of a clut-

ter and graspable. With the synthesized dataset, we train a CNN to

predict and segment the semantic and graspable regions.

(a) RGB image (b) Semantic Label image

(c) Single-arm grasping points (d) Dual-arm grasping points

Figure 4: We stack the subtracted RGB object images and pix-

elwise semantic labels are simultaneously annotated as (a). The

grasping points for both single-arm (b) and dual-arm grasping

(c) are also annotated as pixelwise graspable labels. Images are

from [Kitagawa 18].

3.3 Pixelwise Graspable and Semantic Segmentation
3.3.1 Network Design

We propose an FCN-based network to predict pixelwise seman-

tic and graspable label simultaneously. The whole structure is

based on FCN32s [Long 15] and described in Fig.5. The network

has two parts of convolution layers: the former has the same struc-

ture as convolution layers of VGG16 [Simonyan 14] and extracts

features from RGB image, and the latter splits into each task and

separately predicts pixelwise semantic labels and graspable labels

of single-arm and dual-arm grasping. Therefore, the network does

three segmentation task and outputs three probability images from

one RGB image. Semantic segmentation is formulated as same

as FCN [Long 15], and it predicts the pixelwise probabilities of

semantic labels including the background. For grasping point pre-

diction, we treat it as pixelwise graspable segmentation, and the

network predicts the pixelwise probabilities of graspable labels.

For the input and the output of the network, we resize RGB image

and corresponding label images in 640x480.

3.3.2 Network Training
The loss function of semantic segmentation Lseg is calculated

with softmax cross entropy SCE for each pixel For graspable seg-

mentation, we define the same loss function for both single-arm

and dual-arm grasping. As the graspable regions are much smaller

than ungraspable regions, we set a weight wc
grasp for label c based
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Figure 5: Our network predicts the pixelwise probabilities of semantic and graspable labels simultaneously. C is the number of semantic

labels including the background.

on frequency balancing [Badrinarayanan 15], which increases loss

value of smaller regions:

wc
grasp =

{
Nforeground

αcNc
(Nc �= 0)

0 (Nc = 0)

where grasp ∈ {single, dual} is a grasping way, Nforeground is

the number of non-background pixels in ground truth image of se-

mantic segmentation, Nc is the number of labels c pixels in ground

truth image of grasping segmentation and αc is a constant param-

eter for class c. With wc
grasp, the loss of graspable segmentation

Lgrasp for both single-arm and dual-arm grasping is calculated

with softmax cross entropy SCE as follows:

Lgrasp = −
Cgrasp∑

c

W,H∑
x,y

wc
graspSCE(lcgrasp(x, y), h

c
g(x, y))

(1)

where Cgrasp is the number of grasp labels, lcgrasp is one hot vec-

tor of class c at a pixel (x, y) and hc
grasp(x, y) is network output

of class c at a pixel (x, y). Since graspable segmentation divides

the whole region into two labels: graspable and ungraspable, the

number of grasp labels Cgrasp is fixed as 2. For the whole net-

work, the total loss Ltotal is calculated as the summation of all

losses, Lseg , Lsingle and Ldual, and back-propagated through the

network except the deconvolution layer.

For the optimization, learning rate is initially set as 1.0e−5. We

train the network with αgraspable = 20.0 and αungraspable =

1.0, and the training is done in 200000 iteration with around 20000

synthesized data pairs. In order to make the segmentation robust,

we do data augmentation, and random flip, rotation and RGB mod-

ification are added in every iteration.

4. Adaptation through the Robot Experience
4.1 Grasp Sampling with Trained Network

For the real world adaptation of the trained network, a robot ex-

ecutes grasping trials in the real world with the network and train

and adapt the network with the collected data. In the sampling, we

put an object in front of the robot one by one and try to grasp it with

both single-arm and dual-arm grasping. The robot samples grasp-

ing points by weighted random sampling using graspable segmen-

tation output of the trained network, and we use the pixelwise gras-

pable probabilities inside the object region as the weight of the

sampling, The robot records the grasping result with two labels

success and failure by air pressure sensors, and the failure consists

of grasping failure and self-collision failure. The grasping failures

may happen when a robot does not sample appropriate grasping

points and occurs in both single-arm and dual-arm grasping cases.

On the other hand, the self-collision failure only happens in the

case of dual-arm grasping, and two arms of the robot are too close

or crossing in this case.

4.2 Adaptation with the Sampled Data
After sampling and collecting grasping data in the real world,

we adapt the network by the data. First, we generate an ob-

ject mask image with semantic segmentation output of the net-

work. For graspable segmentation, we annotate successful grasp-

ing points with graspable label and ungraspable label on the rest of

the object region. With the annotated data, we synthesize a dataset

with the same algorithm in Subsection 3.2, and we do the adapta-

tion of the network with the synthesized dataset.

The learning rate is initially set as 1.0e−6, and the training is

done in 12000 iterations, but all the other parameters for training

is same as the training with the automatic annotation. We also do

the same data augmentation in this phase.

5. Selective Dual-arm Grasping
5.1 Extracting Object Graspable Region

With the adapted network, a robot selects to execute proper

grasping motion for successful grasp, and we design selective

dual-arm grasping system shown in Fig.6. In order to evaluate the

two grasping motion, we first do pixelwise multiplication of the

probabilities of semantic label and graspable label image. With

the result of the multiplication, we select object label and grasping

way from single-arm or dual-arm grasping with Argmax function

for every pixel. Therefore, the robot determines which object to

grasp and which grasping way should be executed with Argmax

function. After the motion select, we get the selected object region

from softmax output of the semantic probabilities. The graspable

region is also extracted from the selected graspable probabilities

Pgrasp with the threshold max(Pgrasp) − 0.05. The final gras-

pable region of the selected object is generated by merging the two

regions with PixelwiseAnd function.
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Figure 6: We propose a selective dual-arm grasping system using

semantic and graspable segmentation. The robot selects the object

and the grasping way from the network outputs and determines

grasping points using the region and point clouds.

5.2 Selecting Grasping Points with Point Clouds
From the graspable region, the robot tries to grasp the center of

the region. In order to grasp the center of the region, we first ex-

tract point clouds in the region by masking. After the masking, we

do Euclidean clustering on the extracted point clouds and calculate

the each center of each clusters. We use the center of biggest clus-

ter as the grasping point of single-arm grasping, and for dual-arm

grasping, we use the centers of two biggest clusters as grasping

points. In the end, the robot executes grasping with the calculated

grasping points and selected grasping way.

6. Experiments
6.1 Experimental Configuration∗2

We chose 9 objects from the target objects in Amazon Robotics

Challenge 2017 [Morrison 17], and all the experiments in this pa-

per are conducted in [Kitagawa 18]. For the multi-stage learning,

we did the self-supervised adaptation stage twice after learning

with the automatic annotation. The robot collected 94 data pairs

in the first sampling time and 121 pairs in the second time. There-

fore, the network was trained with a dataset synthesized from 94

sampled data and original object data in the first adaptation stage,

and it was again trained only with 215 sampled data in the second

adaptation stage.

6.2 Warehouse Picking Experiments∗2
For the final experiments, we applied our method to warehouse

picking task. We put all the 9 objects in one tote, and the robot

grasped one object and moved it to the other tote. The objects in

tote were cluttered and overlapped with each other, and the robot

is required to recognize both semantic and graspable region cor-

rectly. We did the picking experiments twice in different settings,

and the robot successfully grasped and moved 6 objects in the first

configuration and 8 objects in the second one. In the experiments,

the robot mostly grasps objects with one arm (Fig.7(a)), but also

executed dual-arm grasping once in both trials (Fig.7(b)).

7. Conclusion
In this paper, we propose a multi-stage learning method of dual-

arm grasping for warehouse picking and implement it to the real

robot. For efficient grasp learning, we propose a multi-stage learn-

ing method with the automatic annotation and grasping trials in

(a) (b)

Figure 7: The robot successfully grasped Aluminum foil with

one arm (a) and Pink table cloth with two arms (b). Images are

from [Kitagawa 18].

the real world, and our method achieved high grasping success

rate with few trail times. In the experiment, dual-arm grasping

was only executed for 10 times because it often failed in the sam-

pling. In order to make the robot choose dual-arm grasping more,

we need to normalize the distribution of the sampled data.
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