
 

- 1 - 

ATM  
ATM Anomaly Behavior Detection with Machine Learning: A Study 

*1    *1   *1    *1 

                  Phan Trong Huy          Reiko Kishi       Kazuma Yamamoto     Makoto Masuda 

  
Corporate Research and Development Center, Oki Electric Industry Co., Ltd. 

In recent years, a steady increase in ATM (Automatic Teller Machine)-related crimes has been reported overseas. One of 
which is ATM skimming; the act of installing skimming devices (a.k.a. skimmers) to ATM to illegally copy information 
from the magnetic stripes of cash cards, credit cards, etc. As skimmers grow smaller and more sophisticated, detecting such 
devices with conventional sensors is facing great difficulties. With the purpose of strengthening ATM security, we are 
developing image sensing technologies that detect anomaly behaviors including ATM skimming acts using video feeds 
capturing the ATM operational area. Machine learning is employed to represent normal behaviors; the degrees of separation 
from such representation can be used as an indicator for abnormality level. In this article, we discuss the application of 
well-known methods (Subspace Representation of [Nanri 2004] and Gaussian Mixture Model of [Yu 2006]) to modelling 
ATM normal behaviors in order to detect ATM anomaly behaviors. Additionally, we also brief several considerations to 
realize high anomaly detection accuracy in real practice. 
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