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A graph is a general and powerful data representation for complex real-world phenomena ranging from chemical
compounds to social networks; however, effective feature extraction from graphs is not a trivial task, and much
work has been done in the field of machine learning and data mining. In this paper, we propose a dual convolution
approach that extracts node representations of a graph of graphs (GoG) consisting of an external graph and internal
graphs, by combining the external and internal graph structures in an end-to-end manner. Experiments on various
types of link prediction tasks demonstrate the effectiveness of the proposed method.
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