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If some classes of the data have an only small number of samples, the accuracies of the classes
become too low. It is well known as an imbalanced data problem. We often encounter imbalanced
data in reality. In a sense, all the wild data are imbalanced.

In this paper, we make pseudo-feature from feature map in lower layers of deep neural net-
works, and we augment the data of minor classes to improve the imbalanced-data problem. We
compare our proposed method with existing ones in imbalanced data multi-class image classifi-
cation problems.
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1: (Accuracy)

#Minor Baseline Down-Sampling
Proposed:

Multivariate Normal

Proposed:

Independent Normal

4 0.711 0.518 0.699 0.697

5 0.662 0.513 0.660 0.655

6 0.608 0.525 0.603 0.600

7 0.585 0.521 0.589 0.583

8 0.558 0.517 0.549 0.556

9 0.511 0.522 0.501 0.532

2: (Min of class-accuracy)

#Minor Baseline Down-Sampling
Proposed:

Multivariate Normal

Proposed:

Independent Normal

4 0.344 0.356 0.479 0.444

5 0.188 0.327 0.351 0.314

6 0.227 0.349 0.323 0.296

7 0.207 0.368 0.291 0.260

8 0.250 0.333 0.298 0.280

9 0.219 0.350 0.268 0.296
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