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Recently, research on artificial intelligence has been progressing in various fields. In some of the Atari 2600games,
the AI player has scored higher than the skilled human players by using deep reinforcement learning techniques.
In this paper, autonomous ground leveling work by a bulldozer is targeted, which are expected to optimize action
of the bulldozer. In previous work, we implemented deep Q learning method by giving images of simulator as the
input data for the network. However, when learning the image using the convolution layer as input using deep
reinforcement learning, it requires large computational cost for learning process. This research aims to reduce the
computational cost by giving smaller order of input data. This paper describes the comparison results in different
order of input data. Transition of the learning sequence is also evaluated.
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