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In this paper we extend the arithmetic operations of the Neural Programmer-Interpreters (NPI). NPI is a re-
current and compositional neural network that learns to represent and execute programs. First, we enable NPI to
execute not only the addition that NPI was originally possible but also the other three arithmetic operations, i.e.
subtraction, multiplication and division. Then, we extend NPI by allowing it to share subprograms between tasks
for improving learning efficiency. Next, we solve word algebra problems for elementary school-level mathematics
which can be solved by using four arithmetic operations. For this purpose, we develop a converter that converts
word algebra problems into mathematical expressions. This neural network is based on the Sequence-to-Sequence
model with the attention mechanism. Using this neural network and NPI, we solve the data sets of word algebra
problems and show that the accuracy of our method is better than the other existing methods.
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