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Layered neural networks (LNNs) have realized high recognition performance for various real datasets, however,
it is difficult for human beings to understand their training results. Conventionally, we have proposed network
analysis methods for extracting simplified structure of a trained LNN, by detecting communities of units based
on the similarity of connection patterns. In this work, we propose a new method for representing the community
structure in a LNN, by using connection weights between pairs of communities. By experiment using the dataset
of diagram recognition, we show that our new method provides clues for interpreting the roles of each community
in a LNN, in terms of which community in input-side adjacent layer is the most important for it in prediction.
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• (Rectangle)· · · a: (0.2, 0.2), b: (0.2, 0.8),

c: (0.8, 0.8), d: (0.8, 0.2)

(a, b), (b, c), (c, d), (d, a)

• (Heart): · · · a: (0.1, 0.5), b: (0.3, 0.8),

c: (0.5, 0.6), d: (0.7, 0.8), e: (0.9, 0.5), f:

(0.5, 0.2) (a, b), (b, c),

(c, d), (d, e) (e, f), (f, a)

• (Triangle)· · · a: (0.5, 0.2), b: (0.8, 0.8),

c: (0.2, 0.8) (a, b),

(b, c), (c, a)

• (Cross)· · · a: (0.2, 0.2), b: (0.8, 0.8), c:

(0.2, 0.8), d: (0.8, 0.2)

(a, b), (c, d)

• (Line)· · · a: (0.2, 0.8), b: (0.8, 0.2)

(a, b)

• (Diamond)· · · a: (0.5, 0.9), b: (0.9, 0.5),

c: (0.5, 0.1), d: (0.1, 0.5)

(a, b), (b, c), (c, d), (d, a)

• (Arrow)· · · a: (0.4, 0.9), b: (0.1, 0.5),

c: (0.4, 0.1), d: (0.9, 0.5)

(a, b), (b, c), (b, d)

• (Ribbon)· · · a: (0.2, 0.2), b: (0.8, 0.8),

c: (0.8, 0.2), d: (0.2, 0.8))

(a, b), (b, c), (c, d), (d, a)

• (Face)· · · a: (0.3, 0.8), b: (0.3, 0.6), c:

(0.7, 0.8), d: (0.7, 0.6), e: (0.2, 0.3), f: (0.8, 0.3)

(a, b), (c, d), (e, f)

• 2 (Two lines)· · · a: (0.2, 0.2), b:

(0.8, 0.2), c: (0.2, 0.8), d: (0.8, 0.8)

(a, b), (c, d)
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