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Recent advancements in computer-assisted learning systems have increased research in the area of knowledge
tracing. Knowledge tracing is a task to estimate student proficiency based on their past interaction with the
learning systems, and it is reported that leveraging neural networks enables efficient estimation. However, such a
development of neural network-based knowledge tracing methods suggests the necessity to review the definition of
”knowledge”, which previously has been designed by human experts and treated as given. In this context, recently
a method to automatically learn efficient knowledge representation from student exercise logs has been proposed,
and it is becoming important to designing more machine-friendly knowledge representation, which enables efficient
performance of knowledge tracing. In this paper, we analyze the properties of knowledge representation learned to
maximize the performance of knowledge tracing, and investigate the important factors for machines to efficiently
perform knowledge tracing. Using a math open dataset, we empirically validated that the learned representation has
more information-efficient structure than the existing representation, and that they have mutually complementing
character to improve the performance of knowledge tracing. These results provide useful insights for reviewing
the definition of knowledge, which previously has been treated as given, and designing machine-friendly knowledge
representation, which could help improve the learning experience of students in more diverse environments.
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1,132 3,439 193 592,407

2:

AUC GRC σ
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