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A study on document classification focusing on the output side weight on Word2Vec
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Document classification is an important technology in modern information society. In recent years, distributed
representation (DR) which embeds semantic relationships of words into vectors has attracted attention and the
methods applying DR to document classification have been reported. DR can be generated mainly by using a tool
called Word2Vec. Word2Vec has the learning structure using a neural network, and we use the weights on the
input side as DR. However, Word2Vec learns different characteristic weights on the output side from DR, which is
not focused on and not commonly used. In this paper, we propose a document classification method by ensemble
learning using DR and the output side weights and suggest the usefulness on the proposed method.
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