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Functional near-infrared spectroscopy (fNIRS) allows researchers to noninvasively monitor cortical activity in a 
naturalistic environment, which is an advantage in a field of human well-being research to measure cognitive load in a daily-
life situation. We investigated the appropriate features of fNIRS signals that best indicates the amount of cognitive load 
required for performing the multisensory-motor cognitive task. The features tested were (1) maximum amplitude relative to 
the baseline (MAX) and (2) cumulated amplitude (area under the curve (AUC)) of the normalized average fNIRS signals, and 
(3) beta value obtained by generalized linear modelling of the raw fNIRS signal using a block design (beta). Oxy-hemoglobin 
fNIRS features of AUC and beta showed better correspondence to the behavioral measure of cognitive load relative to that of 
MAX, suggesting that these two indices could be the suitable measure to evaluate cognitive load from fNIRS signals.  

 

1. INTRODUCTION 
Functional near-infrared spectroscopy (fNIRS) can measure 

cortical hemodynamic responses that reflect cognitive functions. 
The advantage of fNIRS is less constraint in a body posture and 
movement that enables noninvasive measurement of cortical 
activity in a state close to natural, daily-life environment. 
Utilizing these benefits, we have proposed to apply the fNIRS 
technology to evaluate the intensity of physical pain [Matsuda 
2017a 2017b] and discomfort [Ono 2016], and cognitive load 
[Ono 2015] [Azman 2017]. 

Although the cortical origin of hemodynamic signal in fNIRS 
is well confirmed, the fNIRS signal is susceptible to external 
and/or internal artifacts such as probe displacement and systemic 
responses [Tak 2014]. Also the majority of commercial fNIRS 
systems uses continuous-wave NIRS, from which neither the 
absolute concentrations of oxy- and deoxy- hemoglobin (Oxy-Hb 
and Deoxy-Hb) nor the optical path length is obtained. Therefore 
the measured raw signals should appropriately be processed to 
determine the neuronal signals that represent the intensity of 
cognitive activity. 

There are various fNIRS signal features that have been 
proposed to evaluate the intensity of cortical cognitive activity. 
Early studies used the concentration changes of hemoglobin 
oxygenation during the task period, and more sophisticated 
statistical approach of generalized linear model (GLM) was later 
introduced from its relevant field of functional magnetic 
resonance imaging (fMRI) [Tak 2014]. However, which feature 
is most appropriate for fNIRS analysis has not comparatively 
studied yet. We therefore investigated the most appropriate 
feature of fNIRS signals that represent cognitive load using the 
fNIRS data during the multisensory-motor cognitive task [Suzuki 
2018]. We used dance video game (DVG) as a cognitive task 
since the cortical area required to integrate audio, visual, and 
proprioceptive information is well understood [Tachibana 
2011][Ono 2014] and the cognitive load to perform the task can 
be quantitatively evaluated by the behavioral performance such 

as timing and response accuracies. We tested the fNIRS features 
of (1) maximum amplitude relative to the baseline (MAX) of the 
normalized average fNIRS signals [Matsuda 2017a 2017b], (2) 
cumulated amplitude (area under the curve (AUC)) of the 
normalized average fNIRS signals [Ono 2016] [Azman 2017], 
and (3) beta value obtained by GLM of the raw fNIRS signals 
using a block design (beta) [Ono 2015][Tak 2014]. The features 
were obtained in three different conditions with varied 
complexity of the task and compared with the behavioral 
performance. 

2. MATERIAL AND METHOD 

2.1 Participants 
We measured twelve healthy male adults, aged 21-25 years 

(mean and standard error 22.7 ± 0.3 years, all right-handed). The 
study was approved by the ethics committee of Meiji University, 
and all participants gave written informed consent to participate.   

2.2 fNIRS measurement 
We used OMM-3000 fNIRS systems (Shimadzu Co. Ltd., 

Kyoto, Japan). Optodes were arranged over the frontotemporal 
regions of both hemispheres of the participant with inter-optode 
distance of 3 cm for each source-detector pair. Oxy- and deoxy- 
hemoglobin concentration changes were measured with a 
sampling rate of 7.9 Hz. For the current study, we used fNIRS 
signals obtained from the left superior/middle temporal gyrus 
(S/MTG; Figure 1). S/MTG is involved in the comprehension of 
the rhythm [Liégeois-Chauvel 1998] and its activity duration 
correlates with the temporal accuracy of the responses in DVG 
play [Ono 2014]. Previous study has also shown that S/MTG 
activity depends on the cognitive aspect of the motor complexity 
but not on the exercise intensity [Tachibana 2011]. We used a 3D 
digitizer (PATRIOT, Polhemus, Colchester, VT) and obtained 
coordinates of all optode positions and the anatomical landmark 
positions (nasion, inion, auricles and Cz) of each participant 
immediately before data collection. Individual channel positions 
were normalized to the standard MNI coordinates using NIRS-
SPM [Ye 2009] to confirm their anatomical location. Contact: Kota Suzuki, Meiji University, 044-934-7302, 

ce171035@meiji.ac.jp 
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Figure 1. fNIRS channel layout. The mean channel positions 
across all participants of the current region of interest (S/MTG) 
were shown as blue dots on the normalized brain. Channel 
positions were visualized with the BrainNet Viewer 
(http://www.nitrc.org/projects/bnv/) [Xia 2013].  

 

2.3 Experiment design 
We prepared a DVG task (Figure 2) using an open source 

software StepMania software version 3.9. DVG is similar to the 
commercial game Dance Dance Revolution (Konami 
Corporation, Tokyo, Japan). In this experiment, we used 4 
arrows, which were up, down, right and left. The participant had 
to press arrow buttons on the game controller with their finger or 
on the dance pad with their foot at the right timing which are 
indicated as visual cues (arrows) on the screen and by the 
background music. For hand-played condition, participants were 
instructed not to hold the game controller in hands but press the 
button of the controller that was fixed on the table. 

Figure 2 illustrates the experimental design. All participants 
performed DVG three times with different appendage conditions 
(dominant hand (DF), foot (F) and non-dominant hand (NH)) in a 
random order. Generally, the foot-played condition is more 
difficult than hand-played condition since participants require 
more cognitive load to make foot movement to the appropriate 
direction while maintaining their trunk position, which is much 
larger and unfamiliar movement compared to hand movement. 
However our region of interest was located in the multisensory 
integration area of S/MTG, not in the primary motor area, 
therefore the recorded fNIRS signals is hypothesized to represent 
neuronal activities required for cognitive process of multimodal 
integration. 

 
Figure 2. Experiment design. All participants performed DVG 

three times with different appendage conditions (dominant hand 
(DF), foot (F) and non-dominant hand (NH)) in a random order. 

A single measurement is consisted of 30 s of playing DVG and 
30 s of rest alternately 5 times. 

The fNIRS measurement of each condition was always 
preceded by 30 s of practice with the corresponding appendage. 
A single measurement is consisted of 30 s of playing DVG and 
30 s of rest alternately 5 times. A song entitled ‘Butterfly’ 
(recorded by SMILE.dk) used as the background music with total 
of 240 visual cues. The performance of DVG was determined by 
the number of correct arrow cues that were responded in accurate 
timing (those being responded within ± 22.5 ms from the exact 
timing). All participants answered a questionnaire on which 
appendage was the most difficult in this experiment after the 
fNIRS recording. 

2.4 Data analysis 
Oxy-Hb and Deoxy-Hb data in the left S/MTG were analyzed 

to determine the features of MAX, AUC and beta as neuronal 
activity indices. One among 4 channels, which was localized 
most closely at S/MTG, was selected for each participant. 

The MAX and AUC were obtained as follows. Change in 
hemoglobin concentration signals were first averaged with the 
task onset and smoothed using the moving average filter (25 
point, 5 times).  The averaged data was then baseline corrected 
so that the signal amplitude of task onset was set to zero. Lastly, 
the averaged signals were normalized by dividing the averaged 
data by the standard deviation of those during the 10 s before the 
task onset. The averaged hemodynamic responses were manually 
examined for systemic and/or facial muscle artifact 
[Schecklmann 2017][Zhang 2016]. The data were regarded as 
contaminated with systemic and/or muscle artifact and removed 
from further analysis if both Oxy-Hb and Deoxy-Hb responses 
continuously deflected to the same direction (either increasing or 
decreasing) for 10 s from the beginning of the task. Two datasets 
were excluded with this criterion. 

To calculate beta value from GLM analysis we used raw 
fNIRS data. The beta value is obtained by solving the following 
equation of GLM by minimizing the square of error : 

where is raw fNIRS data and  is a regressor matrix 
consisted of vectors of regressor functions. The regressor matrix 
was consisted of a block-design model function derived by 
hemodynamic response function (HRF) [Tak 2014], baseline 
offset, and baseline drift components. The coefficient for the 
block-design model in  was determined as the beta value 
representing the intensity of the fNIRS signal that changed along 
with task. The model function was derived using spm_hrf.m 
function implemented in SPM8 toolbox and obtained the beta 
value at each condition of each subject.  

To investigate the difference in hemodynamic activity among 
different appendages for motor output, we first compared the 
fNIRS features across DH, F, and NH by Friedman test as 
Shapiro-Wilk test failed to confirm the normality of the data. 
Post-hoc multiple comparison was performed by Wilcoxon 
signed-rank test with Bonferroni correction. Behavioral 
performance was compared between conditions using repeated 
measures analysis of variance (ANOVA) with post-hoc multiple 
comparison using paired t-test with Bonferroni correction due to 
the normality of the data. 
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3. RESULTS 
Table 1 shows the mean behavioral performance of DVG task 

among three appendage conditions. There was a significant 
difference in the performance among appendages (repeated 
measures ANOVA: F = 22.00, p < 0.01). DVG play with foot 
resulted in the worst performance compared to dominant and 
non-dominant hands (paired t-test with Bonferroni correction: F 
and DH: p < 0.01, F and NH: p < 0.01) but there was no 
difference in the performance between DH and NH (p = 0.50). 
The performance scores were in accordance with the result of the 
questionnaire in which all participants answered that DVG 
played with foot was the most difficult. 

Figure 3 shows the typical raw waveform of fNIRS 
measurement. Model functions of GLM (black solid and dotted 
lines) well approximated the raw data (P value for linear 
approximation was below 0.001 for all data).  Figure 4 shows the 
typical waveform of event-related average hemodynamic 
responses. The area shaded with pink is AUC of Oxy-Hb activity. 
The time-course of both raw and averaged hemodynamic signals 
showed task-related increases in Oxy-Hb and decreases in 
Deoxy-Hb, showing a cortical activity pattern [Scholkmann 
2013]. In each data, the opposite polarity of Oxy-Hb and Deoxy-
Hb deflection was confirmed. Figure 5 show the results of mean 
MAX, AUC and beta values of different conditions. Although 
the behavioral performance showed statistically significant 
differences between hand- and foot- played conditions, the mean 
MAX value of Oxy-Hb data failed to capture the significant 
difference between these conditions (Friedman test: 2 = 5.60, p 
= 0.061). On the other hand, the mean AUC and beta values of 
Oxy-Hb data showed significantly different values among 
appendages (Friedman test: 2 = 7.80 and 9.50, p = 0.020 and 
0.009 in AUC and beta, respectively).  

Post hoc multiple comparison was performed for AUC and 
beta features by Wilcoxon signed-rank test with Bonferroni 
correction. Statistically significant difference was confirmed 
between foot-played and dominant-hand conditions in both AUC 
and beta features (AUC: p = 0.021, beta: p = 0.009). The 
temporal activity was larger when DVG played by foot relative 
to hand.  

We did not find any statistically significant conditional 
differences in any of these fNIRS features using the Deoxy-Hb 
signals. 

 
Table 1. Mean behavioral performance of participants in hand- 

and foot- played DVG task. The performance was represented as 
percentage of temporally accurate responses. The asterisk 

indicates that the value is significantly larger than foot-played 
condition (p < 0.05). 

Appendage 
condition 

Percentage of  
temporally accurate responses 

DH 49.4 * 
NH 46.6 * 
F 36.1 

 
Figure 3. The typical raw fNIRS waveform (Participant 10 on 
foot-played condition). The dotted vertical lines indicate task 
start (black) and end (green). 

 
Figure 4. The typical event-related average hemodynamic 
responses (Participant 5 on foot-played condition). The dotted 
black vertical lines indicate task period. The area painted with 
pink shows AUC. 
 

4. DISCUSSION 
We investigated three types of fNIRS features during cognitive 

task to investigate the appropriate signal feature representing the 
amount of cognitive load. We used DVG as a cognitive task 
because the behavioral score of the DVG can be approximate the 
cognitive load required to perform the task.  
The behavioral performance showed that DVG played with foot 
is more difficult than that played with hand. This indicates that 
the DVG played with foot need a higher cognitive load than with 
hand. 

The mean AUC and beta values with foot-played condition 
were significantly larger than those with dominant hand-played 
condition. The increased fNIRS activity corresponds to the 
requirement of more cognitive activity to perform the task, which 
resulted in the lower behavioral score. However, there was no 
significant difference between hand and foot conditions in fNIRS 
features when we used mean MAX values. Previous study 
showed that S/MTG is necessary for motor output at the correct 
timing that required audiovisual integration [Suzuki 2017]. 
Another research reported that MTG becomes active when a 
person with limited ability of beat perception tried to perceive 
rhythm [Grahn 2009]. It is suggested that both AUC and beta 
values obtained from GLM analysis could be used for evaluating 
cognitive load. Although more data analysis using different data 
set is required, the higher statistical confidence in beta values 
suggests the superior ability to detect cognitive load over AUC. 
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Figure 5. Average MAX (a), AUC (b), and beta (c) values in 
S/MTG. Error bars show standard error. Asterisk shows 
statistically significant difference (p < 0.05, Wilcoxon signed-
rank test with Bonferroni correction). 

 
In the current analysis, Deoxy-Hb signals failed to show 

significant difference between conditions in all analysis methods. 
Although its lower signal-to-noise ratio, there are reports 
showing the superiority of Deoxy-Hb signals in the sense of 
robustness of the signals against global systemic responses 
[Zhang 2016]. Since we observed a slight time delay in the 
Deoxy-Hb waveforms relative to Oxy-Hb ones (Figure 3), there 
may be a necessity to change the time window and/or modify the 
model function to be analyzed which matches with Deoxy-Hb 
signals to obtain meaningful features. 
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